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In Memoriam 
23 Jan 1924 – 17 July 1998  
“James Lighthill was acknowledged throughout 
the world as one of the great mathematical 
scientists of this century. He was the prototypical 
applied mathematician, immersing himself 
thoroughly in the essence and even the detail of 
every engineering, physical, or biological problem 
he was seeking to illuminate with mathematical 
description, formulating a sequence of clear 
mathematical problems and attacking them with a 
formidable range of techniques completely 
mastered, or adapted to the particular need, or 
newly created for the purpose, and then finally 
returning to the original problem with 
understanding, predictions, and advice for action.”  
(from the David Crighton memorial in AMS 
Notices) 



Metric System prefixes 
Prefix Multiplier Power 

Kilo 1,000 3 

Mega 1,000,000 6 

Giga 1,000,000,000 9 

Tera 1,000,000,000,000 12 

Peta 1,000,000,000,000,000 15 

Exa 1,000,000,000,000,000,000 18 

Zetta 1,000,000,000,000,000,000,000 21 

Yotta 1,000,000,000,000,000,000,000,000 24 

(1988) 
(1998) 
(2008) 
(20??) 
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“Top 500” list positions #1 and #500  
over the decades – exaflop/s by 2020? 

c/o SciDAC Review 16, February 2010 

(benchmarked each June and November) 

1000X improvement in peak 
flops and in attained flops 
every decade, for 30+ years 





13.6 GF/s 
8 MB EDRAM 

4 processors 

1 chip 

13.6 GF/s 
2 GB DDRAM 

32 compute cards 

435 GF/s 
64 GB  

32 node cards 

16 racks 

222 TF/s 
32 TB  

Rack 

System 

Node Card 

Compute Card 

Chip 

14 TF/s 
2 TB  

KAUST’s petascale system from 
#34 in the world, November 2010 
#6 in academia, November 2010 

IBM’s BlueGene/P: 
16K quad-core procs 
with 2 FMADD/cycle 
@ 850 MHz                   
= 0.222 Pflop/s 



How to calculate peak flop/s 
     Multiply together the number of processors, the number 

of cores per processor, the number of floating point 
operations that can be done in each core on each clock 
cycle , and the clock rate in cycles per second: 

 

! 

(16 "1024) " 4 " 2 " 2 " (850 "106) # 0.222 "1015

16K quadcore dual FMADD 850 MHz 



Layout of BG/P chip 
    BG/P System on a chip: 
     4 PowerPC 450 cores  

w/dual FPUs, memory 
controllers, ethernet 
controller, adaptive 
router with DMA, a 
global reduction 
network, 8MB of 
embedded DRAM – all 
in 208 million transistors 
on a 0.13µm line width 

     (a third of a trillion 
transistors in Shaheen’s 
processor chips, overall) 

1.1 cm 



Where to find the “big iron” today 
    312 of the “Top 500” computer systems in the world are 

operated by industry (http://www.top500.org/) 

Sector # 
sys 

% share Rmax sum  Rpeak sum Proc sum 

Industry 312 62.4 8.99 Pf 16.33 Pf 1,547,276 

Research 91 18.2 12.48 Pf 16.27 Pf 2,155,447 

Academic 79 15.8 5.57 Pf 7.13 Pf 826,584 

Government 9 1.8 0.58 Pf 0.76 Pf 74,744 

Classified 5 1.0 0.14 Pf 0.20 Pf 22,844 

Vendor 4 0.8 0.22 Pf 0.27 Pf 37,732 

TOTALS 500 100.0 27.98 Pf 40.95 Pf 4,664,627 

Petaflop/s 



 Questions to consider 
n Why the push to the exascale? 
n What will systems a thousand times faster than today’s 

petascale systems look like architecturally? 
n What will be the implications of their budgets for 

power and acquisition? 
n What should we do about it to prepare, algorithmically? 



1950 2000 2050 

  confirm 

  predict 

Experimentation 
& Observation 

Simulation 

discover 

understand 
Los Alamos 

typical research 
institution 

FSU, KAUST & 
others 

SciDAC 



Why push to extreme scale? 
n  Better resolve model’s full, natural range of length or time scales 
n  Accommodate physical effects with greater fidelity 
n  Allow the model degrees of freedom in all relevant dimensions  
n  Better isolate artificial boundary conditions (e.g., in PDEs) or better 

approach realistic levels of dilution (e.g., in MD) 
n  Combine multiple complex models 
n  Solve an inverse problem, or perform data assimilation  
n  Perform optimization or control 
n  Quantify uncertainty 
n  Improve statistical estimates  

n  Operate without models (machine learning)  

“Third paradigm” 

“Fourth paradigm” 



The third paradigm 
The “third paradigm” paper (1986) 

“During its spectacular rise, the computational has joined the 
theoretical and the experimental branches of science…” 
 – Peter D. Lax, in J. Stat. Phys., 43:749-756 

The “Grand Challenge” paper (1989) 
"Grand Challenges of Computational Science” … define 

opportunities to open up vast new domains of scientific research, 
domains that are inaccessible to traditional experimental or 
theoretical models of investigation.” – Kenneth G. Wilson,  

in Future Generation Computer Systems, 5:171-189 



“….Authors in this volume … refine an 
understanding of this new paradigm 

from a variety of disciplinary 
perspectives.”  

 — Gordon Bell, Microsoft Research 

The Data-centric world paper (2006) 
“The data need to be curated with metadata, 
stored under a schema with a controlled vocabulary, and 
indexed and organized for quick and efficient temporal, 
spatial, and associative search.”  
– James N. Gray et al., in IEEE Computer, 39:110-112 

The fourth paradigm 



Combining the paradigms: 
forward vs. inverse problems 

forward problem 

solution 

inverse problem 

model model 

params 

+ regularization 



How would these needs be felt at, e.g.,  
an oil company? 

n  Better resolve model’s full, natural range of length or time scales 
  Discretize a reservoir into more layers and horizontal cells 

n  Accommodate physical effects with greater fidelity 
  Replace black oil assumption with fuller compositional effects 

n  Allow the model degrees of freedom in all relevant dimensions 
  Here, all three space dimensions, plus time  

n  Better isolate artificial boundary conditions or better approach 
realistic levels of dilution  
  Use additional cells outside of the production and injection zones to 

buffer the zones where data is needed from unknown geology and 
fluxes 



n  Solve an inverse problem, or perform data assimilation 
  Match simulation with drilling and historical production records to 

better estimate unknown parameters in the model and nudge the 
simulation towards reality, where and when reality is known  

n  Combine multiple complex models 
  Unify the simulations of adjacent fields to capture the effects of 

producing one of them on the other, monitor production through 
changes in seismic profiles, or model surface subsidence 

n  Perform optimization or control 
  Select a strategy for injection and pumping in the thousands of wells 

per reservoir 

How would these needs be felt at, e.g.,  
an oil company? 



n  Quantify uncertainty 
  Given the many unresolvable uncertainties in program inputs, bound 

the error in the outputs in terms of errors in the inputs 

n  Improve statistical estimates 
  Treating uncertain inputs as random, improve output estimates  

How would these needs be felt at, e.g.,  
an oil company? 



c/o A. Dogru (used by permission) 



Need for extreme scale goes far beyond 
these, however! 

n  Oil companies are vast, with dozens of reservoirs “upstream” 
and many refineries and transportation systems “downstream” 

n  Oil companies function under many constraints for product 
supply and must seek to maximize profit while satisfying 
output demands in many different product streams producible 
from the same crude 

n  Tens of thousands of  “valves” (literal and figurative, like 
workforce and other controls) need to be scheduled 
continuously 

n  Mathematically, this is a massive, nonlinear and possibly non-
robust constrained optimization problem – insatiably power 
hungry 



How should such resources be managed? 
n  They are too complex for a self-contained, self-consistent theory 
n  They are unsuitable for experiment, because you can only do the 

experiment (e.g., exploiting a reservoir) once 
n  Engineering heuristics are useful (and used!), but  

  gone are the days when employees spent decades understanding a single 
reservoir 

  the external forcings (e.g., world economy) change daily, making history 
less useful 

n  Simulation is an incredibly useful tool for exploring scenarios 
experimentally in a virtual world 

n  Data mining and machine learning may be even more useful 
tools in the future 



Dominant findings on models and scaling 
on today’s petascale simulations (ref: IESP) 
n  Predominantly bulk synchronous, MPI and SPMD, either 

domain-, particle-, or other object-decomposed 
n  Electronic Structure codes, however, are dominantly not MPI, 

but global shared memory (e.g., GlobalArrays) 
n  Other models are Charm++ (NAMD) and distributed objects 

built on top of active messages and Pthreads 
n  Some codes have multiple phases with not necessarily 

compatible load-balanced decompositions 
n  Typically already running hybrid MPI/OpenMP with “small” 

numbers of cores, up to 48 
n  We can typically weak-scale without serious loss of scaling 

out to the edge of today’s machines (300K cores), and 
theoretically beyond 



Dominant findings on resources 
n  Memory bandwidth  

  Majority of the apps are already bandwidth limited in most 
phases even with relatively few cores 

n  Flop/s per byte of storage 
  Generally linear or log-linear, in weak scaling 

n  I/O versus computation 
  With notable exceptions that are I/O intensive, the majority of 

our peta-apps need intensive I/O only at start-up and in dumping 
the output 

  We expect check-pointing to become much more intensive at the 
exascale, and perhaps limiting, even with users taking charge of 
check-pointing minimal state 



Dominant findings on resources, cont. 
n  Communication versus computation 

  In weak scaling there is generally a constant ratio of near-
neighbor communication to computation, represented by a 
minimum collections of vertices, cells, particles, etc., per 
processor 

n  Synchronization versus computation 
  We require frequent global collectives 

  At least once per timestep in evolutionary codes 
  Even more frequently when implicit linear algebra needs to be performed 

within each timestep 



 Remaining presentation plan 
n  Reflect briefly on progress in high-end scientific 

computing  
  as captured in ACM Gordon Bell prize trends 
  as analyzed in some of the eight U.S. DOE “extreme scale” 

workshops of 2009-2010 (extremescale.labworks.org) 

n  Peek briefly at structure of a core motivating application 
n  Take a look at a few hurdles and possible solutions in 

algorithmic and programming model development arenas 



Six orders of 
magnitude in 
20 years 

Tracking third paradigm progress: 
Gordon Bell Prize “peak performance” 

2010    FMM    Physiology             196,608   XT-5                            780,000 



Tracking third paradigm progress: 
Gordon Bell Prize: “price performance” 
      
Year  Application  System $ per Mflops 

MMflop/s 
 

1989  Reservoir modeling  CM-2 2,500 
1990  Electronic structure  IPSC 1,250 
1992  Polymer dynamics  cluster 1,000 
1993  Image analysis  custom 154 
1994  Quant molecular dyn  cluster 333 
1995  Comp fluid dynamics  cluster 278 
1996  Electronic structure  SGI 159 
1997  Gravitation  cluster 56 
1998  Quant chromodyn  custom 12.5 
1999  Gravitation  custom 6.9 
2000  Comp fluid dynamics  cluster 1.9 
2001  Structural analysis  cluster 0.24 

 

5.5 orders of 
magnitude in 
20 years  

2009      Gravitation & turbulence cluster (GPU)           0.0081 



Gedanken experiment: 
How to use the palm date, 

as its price slides downward? 
In 2011, at $16/kg:  

 eat, as a delicacy 
By 2014, at $4/kg: 

 substitute for other oils 
and sugars 

By 2017, at $1/kg:  
 use as a feedstock for 
biopolymers, plastics, etc. 

By 2020, at $0.25/kg:  
 heat homes 

By 2023, at $0.06/kg:  
 pave roads J 

 The cost of computing has been on a curve much better than this for two decades. Finally, after everyone else, 
scientists and engineers (very conservative people, on the whole) are planning increasing uses for it… 



Whimsical remarks on simulation 
progress measured by Bell, since 1988 

n  If similar improvements in speed (106) had been realized 
in the airline industry, a 19-hour flight (e.g., SIN-EWR) 
would require one-fifteenth of a second today 

n  If similar improvements in storage (104) had been realized 
in the publishing industry, our office bookcases could hold 
the book portion of the collection of the U.S. Library of 
Congress (~20M volumes) 

n  If similar reductions in cost (105) had been realized in the 
higher education industry, tuition room and board (at a 
college in the USA) would cost about $0.20 per year 



 Exascale considerations 
n  Applications 

  What do we want to simulate at the exascale, why, and in what best 
formulation or sets of formulations? 

n  Architectures 
  What are the hurdles of granularity, cost, power, programmability, 

systems software, reliability (resilience) in delivering exascale 
systems, and how can they be surmounted? 

n  Algorithms 
  How can we get the applications to run on architectures that are 

physically and fiscally achievable (“co-design” of architecture and 
application) 



Philosophy of an algorithmicist 
n  Applications are given (as function of time) 
n  Architectures are given (as function of time) 
n  Algorithms and software must be adapted or created to bridge to 

hostile architectures for the sake of the complex applications 
  as important as ever today, with transformation of Moore’s Law from 

speed-based to concurrency-based, due to power considerations 
  scalability still important, but new memory-bandwidth stresses arise 

when on-chip memories are shared 
  greatest challenge is lack of performance robustness of individual 

cores, which can spoil load balance 
n  Knowledge of algorithmic capabilities can usefully influence  

  the way applications are formulated 
  the way architectures are constructed 

n  Knowledge of application and architectural opportunities can 
usefully influence algorithmic development 



How are problems like these solved at 
the petascale today? 

  Iterative methods based on domain decomposition and 
message-passing 
  Each individual processor works on a subdomain of 

the original problem and exchanges information at its 
boundaries with other processors that own subdomains 
with which it interacts causally, to evolve in time or to 
establish equilibrium (steady state) 

  The programming model is SPMD/BSP/CSP 
  Single Program, Multiple Data 
  Bulk Synchronous Programming refers to alternating 

nearly uniformly sized chunks of work on each 
processor with bursts of exchanges of data 

  a.k.a. Communicating Sequential Processes 
  Nearly all successful large-scale simulations are built this 

way today – and this may change radically at the exascale 



SPMD parallelism  
with domain decomposition 

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian) 

Ω1 

Ω2 

Ω3 

A23 A21 A22 
rows assigned 

to proc “2” 



Domain decomposition 
is relevant to any local stencil formulation 

finite elements finite volumes 

•  All lead to sparse Jacobian matrices  

J= 

node i 

row i 
•   However, the inverses are generally 
dense; even the factors suffer 
unacceptable fill-in in 3D 
•   Want to solve in subdomains only, and 
use to precondition full sparse problem 

finite differences 

uniform     Cartesian 
adaptive 



n Krylov-Schwarz:  
a linear solver “workhorse” 

n Krylov 
n accelerator 

n spectrally adaptive 

! 

Ax = b

  

! 

x =
v"V #{b,Ab,A 2b,!}
argmin {Av $ b}

n Schwarz 
n preconditioner 
n parallelizable 

! 

B"1Ax = B"1b

! 

B"1 =#i Ri
T (RiARi

T )"1Ri



Workhorse innards: Krylov-Schwarz,  
a Bulk Synchronous Process (“BSP”) 

local 
scatter 

Jac-vec 
multiply 

precond 
sweep 

daxpy  inner     
product 

Krylov 
iteration 

…

Idle time due to load imbalance becomes a 
challenge at, say, one million cores, when one 
processor can hold up all of the rest at a 
synchronization point 

P1: 

P2: 

Pn: 


communication imbalance computation imbalance 



What will first “general purpose” exaflop/s 
machines look like? 

n  Many paths beyond today’s CMOS silicon-based logic 
n  Earliest and most significant post-CMOS device improvement 

may be carbon nanotube memory, but not in 10 years 
  up to tens of GB on a 1 cm-square die 
  will deal directly with the “memory wall” problem 

n  Two paths from peta- to exa- 
  IBM: BlueGene’s successor, maybe at 22nm linewidth technology – 

some architectural merger of BlueGene, Power, and Cell 
  All others: GPGPU-based spinoff 

n  At least for PDE-based scientific codes: 
  programming model will still be message-passing (due to large legacy 

code base), adapted to multicore processors beneath the MPI interface, 
and made less synchronous 



Prototype exascale hardware:  
a heterogeneous, distributed memory 
GigaHz KiloCore MegaNode system 

c/o P. Beckman 

~3 



 
Hurdle #1: memory bandwidth eats up the 

entire power budget 
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c/o John Shalf, LBNL 



Hurdle #2: memory capacity eats up the 
entire fiscal budget 
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Petabytes of Memory 
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1/2 of $200M system 

c/o John Shalf, LBNL 



Hurdle #3: power requires slower clocks 
and greater concurrency 

c/o SciDAC Review 16, February 2010 



Implications 
n  Expanding the number of nodes (processor-memory units) to 

106 is not a serious threat to algorithms that lend themselves to 
well-amortized precise load balancing (like PDEs) 
  Provided that the nodes are performance reliable 

n  The real challenge is expanding the number of cores on a node 
to 103 

  Must be done while memory and memory bandwidth per node 
expand by (at best) ten-fold less 

n  It is already about 103 slower to to retrieve an operand from 
main DRAM memory than to perform an arithmetic operation 
– will get worse by a factor of ten 
  Almost all operands must come from registers or upper cache 



Implications, cont. 
n  Draconian reduction required in power per flop and per byte 

will make computing and copying data less reliable 
  voltage difference between “0” and “1” will be reduced 
  circuit elements will be smaller and subject to greater physical 

noise per signal 
  there will be more errors that must be caught and corrected 

n  Power will have to be cycled off and on or clocks slowed and 
speeded based on compute schedules and based on cooling 
capacity 
  makes per node performance rate unreliable 



Sources of nonuniformity 
n  System 

  Manufacturing, dynamic power management, soft errors, hard 
component failures, OS jitter, software-mediated resiliency, 
TLB/cache performance variations, network contention, etc. 

n  Algorithmic 
  Physics at gridcell scale (e.g., table lookup, equation of state, 

external forcing), discretization adaptivity, solver adaptivity, 
precision adaptivity, etc. 

n  Effects are similar when it comes to waiting at synchronization 
points 

n  Possible solutions for system nonuniformity will improve 
programmability, too 



Pax MPI is over 

Pax MPI 
(1994 - 2010) 



Pax MPI 
  1994-2010* 
  Universal language 

  enabled free trade in applications and libraries 

  Safe porting 
  codes linked and ran “first time” across desktops, 

clusters, high-end systems  

  Was protested, but conferred advantages 

* MPI continues for a long time.  However, the empire of MPI-only       
begins to disintegrate into non-universal programming model groups.  



Pax Romana 



Pax Romana 
  27 BC – 180 AD* 
  Universal language 
  Safe ports and roads 
  Occupancy was protested, but conferred 

advantages 

       * Rome continues for centuries.  However, the empire begins to 
disintegrate into non-universal governments and cultures. 



Some exascale themes 
  Clock rates cease to increase while arithmetic capacity 

increases dramatically w/concurrency* 
  Storage capacity diverges exponentially below 

arithmetic capacity 
  Transmission capacity diverges exponentially below 

arithmetic capacity 
  Mean time between hardware interrupts shortens 
  Billions of dollars/euros/etc. of scientific software hang 

in the balance until better algorithms arrive to span the 
architectural gap 

*Moore’s Law (1965) does not end, but Dennard scaling (1974) does 



Moans from application developers 
n  The present consensus path to exascale is thousand-fold 

manycore 
  However, memory bandwidth is already limiting today’s low core count 

nodes to less than 10% of peak on most apps, whose kernels offer little 
cache reuse (e.g., stencil ops or sparse matvecs) 

  Processors are cheap and (relative to memory) small in chip area and 
relatively low in power, so there is no harm in having them in excess 
most of the time, but the opportunities for exploiting the main new source 
for performance are undemonstrated for most applications 

n  While there is opportunity for combining today’s individually 
high capability simulations into complex simulations, there is 
no silver bullet for merging the data structures of the separate 
applications  
  The data copying inherent in the code coupling will likely prevent 

exploitation of the apparent concurrency opportunities 



Chief issues identified by apps groups of the   
International Exascale Software Project 
n  I/O 
n  Fault tolerance 
n Reproducibility of computations 
n  Programming models and algorithms 



I/O 
n  For some important apps, I/O is a likely 

bottleneck 
  For input, for output (including visualization), or for 

checkpointing, or any combination 

n  I/O must be acknowledged as primary for many 
apps (though certainly not all), but is beyond the 
scope of this talk 



Fault tolerance 
n  IESP users reluctantly recognize that fault 

tolerance is a shared responsibility 
  It is too wasteful of I/O and processing cycles to 

handle faults purely automatically 

n Different types of faults may be handled different 
ways, depending upon consequences evaluated by 
scientific impact 

n  Strategic, minimal workingset checkpoints can be 
orchestrated by application developers and users 



Reproducibility 
n  IESP users realize that bit-level reproducibility is unnecessarily 

expensive most of the time 
n  Though scientific outcomes must be run- and machine-independent, 

we have no illusions about bit-level reproducibility for individual 
pairs of executions with the same inputs 
  Since operands may be accessed in different orders, even floating point 

addition is not commutative in parallel and on inhomogeneous hardware 
platforms; this has been true for a long time 

  A new feature, with an emphasis on low power (low voltage switching), 
is that lack of reproducibility may emerge for many other (hardware-
based) reasons 

   If applications developers are tolerant of irreproducibility for their own 
reasons, e.g., for validation and verification through ensembles, then this 
has implications for considering less expensive, less reliable hardware 



Programming model 
n  Prior to possessing exascale hardware, users can prepare 

themselves by exploring new programming models  
  on manycore and heterogeneous nodes 

n  Attention to locality and reuse is valuable at all scales  
  will produce performance paybacks today and in the future 

n  New algorithms and data structures can be explored under the 
assumption that flop/s are cheap and moving data is expensive 

n  Bandwidth pressure can be reduced by considering mixed-
precision algorithms, using lower precision wherever possible 

n  Relaxation of synchrony could relieve pressure on load 
balance 



Evolution of parallel programming models: 
strong scaling within a node 

shared memory 
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tomorrow’s 2- or 3-level models: hybrids 



Benefits of 2-level parallelism for 3D FFT 
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No of Nodes and Cores 

Comm Perf of 3D FFT on Franklin 

Comm MPI 

Comm MPI + OpenMP 

Just four 
cores per 
node 

c/o John Shalf, LBNL 



Hybrid programming model for a full application: 
petascale bio-electro-magnetics  

Two-pronged  Approach (FEM/BEM) 
  Cross-validate, verify, & build confidence in 

unprecedented petascale results  
  Evolve sub-mm resolution human body models  
  Next generation EM solvers: FFT-accelerated integral-

equation solvers (BEM prong); HP-adaptive 
differential-equation solvers (FEM prong); novel 
preconditioned iterative solvers  

  Target multi-core clusters: Nested distributed-/shared-
memory parallelism and hybrid programming (MPI/
OpenMP) 

  High-fidelity petascale BIOEM simulations 
  Shed light to controversial scientific and engineering 

questions 

High-Fidelity BIOEM Simulation 
  Minimize health risks & increase efficiency of 

wireless devices 
  Existing results contradictory, e.g., do children’s 

smaller heads absorb more radiation or allow deeper 
penetration? Need reproducible, reliable, high-
accuracy, high-resolution simulations 

  Solve coupled Maxwell’s EM and Penne’s Bio-Heat 
Transfer equations :  Human & device models must 
resolve geometry, material, EM wavelength, and 
thermal mechanisms (petascale problem) 

  Advance the state-of-the-art: Develop novel petascale 
BIOEM simulators, investigate and quantify modeling 
& analysis errors 
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Hybrid programming models not enough 
n  Tools for monitoring the availability and predicted 

performance of  resources within an architecture-adaptive and 
application-adaptive are improving 

n  However, even perfect knowledge of resource capabilities at 
every moment and perfect load balancers will not rescue 
billion-thread SPMD implementations of PDE simulations, 
etc. 
   cost of rebalancing frequently is too large 
  Amdahl penalty of failing to rebalance is fatal 



n  Can write code in styles that do not require artifactual 
synchronization 

n  Critical path of a nonlinear implicit PDE solve is essentially 
… lin_solve, bound_step, update; lin_solve, bound_step, update … 

n  However, we often insert into this path things that could be done 
less synchronously, because we have limited language 
expressiveness 
  Jacobian and preconditioner refresh 
  Convergence testing 
  Algorithmic parameter adaptation 
  I/O, compression 
  Visualization, data mining 

 

Evolution of parallel programming models: 
breaking the synchrony stronghold 



Adaptation to  
asynchronous programming styles 

n  To take full advantage of such asynchronous algorithms, we 
need to develop greater expressiveness in scientific 
programming 
  Create separate threads for logically separate tasks, whose priority is 

a function of algorithmic state, not unlike the way a time-sharing OS 
works 

  Join priority threads in a directed acyclic graph (DAG), a task graph 
showing the flow of input dependencies; fill idleness with noncritical 
work or steal work 

n  Steps in this direction  
  Asynchronous Dynamic Load Balancing (ADLB) [Lusk (Argonne), 

2009] 
  Asynchronous Execution System [Steinmacher-Burrow (IBM), 2008]  



Algorithmic adaptation to  
asynchronous programming styles 

n  Additive versions of algorithms are often available that 
significantly relax synchronicity 

n  Such algorithms have received a bad rap historically 
  “chaotic relaxation,” Chazan & Miranker, 1969, for instance   

n  However, they can sometimes be made virtually as good as their 
multiplicative cousins 
  “AFACx” versus “AFAC,” Lee, McCormick, Philip & Quinlan, 

2003, for instance  



 Peta to exa for algorithms 
n  Things we need to do for exascale will help us at petascale and 

terascale 
  Reducing memory requirements and memory traffic 
  Exploiting hybrid and less synchronous parallel programming models 
  Co-design of hardware and software (for, e.g., power management) 

n  Though it inveighs against the CS aesthetic of “separation of 
concerns”, and involves more issues, co-design requires similar 
attitude and aptitude as in, say, MPI programming today 
  Applications programmers have “bit the bullet” and designed excellent 

MPI-based codes, by using quality libraries designed and ported by 
specialists 

  Hopefully, we will be able to isolate applications programmers from 
many of the hardware and software architectural details, just as we do 
today from message-passing details 



Peta to exa 
n Billion-way parallelism of GigaHertz cores will not 

significantly expand today’s million-way flat 
parallelism at the node level 
  MPI legacy code will still be usable on the “outside” on a 

million nodes 
  Changes will be mainly within a node, where we will need 

to evolve thousand-way parallelism: “MPI+X” 

n  Principal challenges from peta to exa are within the 
node, and the burden is shared by the marketplace at 
all scales of node aggregation 



Path for scaling up applications 
n  Weak scale applications up to distributed memory limits 

  Proportional to number of nodes 
n  Strong scale applications beyond this 

  Proportional to cores per node/memory unit 
n  Scale the workflow, itself 

  Proportional to the number of instances (ensembles) 
  Integrated end-to-end simulation 

n  Co-design process is staged, with any of these types of scaling 
valuable by themselves 

n  Big question: does the software for co-design factor? Or is all 
the inefficiency at the data copies at interfaces between the 
components after a while? 



Required software enabling technologies 
      Model-related 

  Geometric modelers 
  Meshers 
  Discretizers 
  Partitioners 
  Solvers / integrators 
  Adaptivity systems 
  Random no. generators 
  Subgridscale physics  
  Uncertainty 

quantification 
  Dynamic load balancing 
  Graphs and 

combinatorial algs. 
  Compression  
 

        Development-related        
  Configuration systems 
  Source-to-source 

translators 
  Compilers 
  Simulators 
  Messaging systems 
  Debuggers 
  Profilers 
 

      Production-related 
  Dynamic resource 

management 
  Dynamic performance 

optimization 
  Authenticators 
  I/O systems 
  Visualization systems 
  Workflow controllers 
  Frameworks 
  Data miners 
  Fault monitoring, 

reporting, and recovery 

High-end computers come 
with little of this stuff. 

Most has to be contributed 
by the user  community 



Algorithmic Priority Research Directions (1) 
n Advanced mathematical methods for scientific 

understanding in exascale simulations, 
including in situ 
  Uncertainty quantification, intrusive and 

nonintrusive 
  Optimization, inverse problems, sensitivity 
  Analysis and Visualization 
  Validation and Verification 



Algorithmic Priority Research Directions (2) 
n Exascale algorithms that expose and exploit 

multiple levels of parallelism 
  Communication-reducing algorithms 
  Synchronization-reducing algorithms 
  Fault resilient algorithms 

n  Support for multiphysics, multiscale methods 
  Break the SPMD and BSP paradigms when joining 

multiple different codes 
  Stability of coupling 



Algorithmic Priority Research Directions (3) 
n Exascale algorithms for constructing and 

adapting discrete objects 
  Algorithms that deal with unpredictable, dynamic 

workloads and have few flops to hide 

n Mixed precision arithmetic, to use the lowest 
precision required to achieve a given accuracy 
outcome 
  Improves runtime, power consumption 
  Reformulate algorithms to find corrections, rather 

than solutions 



Progressive by-product 
n The consolation for the architecture-induced hard 

work of reducing synchrony is that algorithms have 
been waiting for this freedom for a long time 
  freedom to adapt the mesh or vary the timestep locally 
  freedom to vary the physical models at the cells or particle 

level 
  Freedom to vary the precision 

n Once the synchronization is thrown on the 
programming model and runtime system, developers 
are less constrained 



Summary: 
High reward R&D themes for algorithms 

n Mixed precision arithmetic, to use the lowest precision 
required to achieve a given accuracy outcome 
  Improves runtime, power consumption 
  Reformulate algs to find corrections, rather than solutions 

n  Prioritization of critical path and noncritical tasks 
  DAG scheduling of critical path tasks 
  Allows taking advantage of asynchronicity between major 

steps and adaptive load balancing for noncritical tasks 

n Communication-reducing algorithms 
n And, of course, better mathematical formulations 



 Recapitulation 
n  Reflected briefly on progress in high-end scientific computing  
n  Peeked briefly at some motivating applications 
n  Looked generically at PDE-based simulation and the basis of 

continued optimism for its growth – capability-wise 
n  Looked at some specific hurdles to and opportunities for 

PDE-based simulation posed by high-end architecture 



Kennedy’s challenge, 1962 

    “We choose to do [these] things, not 
because they are easy, but because 
they are hard, because that goal will 
serve to organize and measure the 
best of our energies and skills, 
because that challenge is one that we 
are willing to accept, one we are 
unwilling to postpone, and one 
which we intend to win...”  



Acknowledgment: 
 today’s Peta-op/s machines  

1012 neurons @ 1 KHz = 1 PetaOp/s 
(volume 1.5 liters, weight 3 lbs, consumes 20 W) 



Zetta-scale, anyone? 


