

Exaflop/s,
Seriously!

David Keyes

Division of Mathematical and Computer Sciences and Engineering, KAUST
Fu Foundation Professor of Applied Mathematics, Columbia University

Based on an article “The Exascale: Why and How” in

Comptes Rendus de l’Academie des Sciences (2011)

In Memoriam
23 Jan 1924 – 17 July 1998
“James Lighthill was acknowledged throughout
the world as one of the great mathematical
scientists of this century. He was the prototypical
applied mathematician, immersing himself
thoroughly in the essence and even the detail of
every engineering, physical, or biological problem
he was seeking to illuminate with mathematical
description, formulating a sequence of clear
mathematical problems and attacking them with a
formidable range of techniques completely
mastered, or adapted to the particular need, or
newly created for the purpose, and then finally
returning to the original problem with
understanding, predictions, and advice for action.”
(from the David Crighton memorial in AMS
Notices)

Metric System prefixes
Prefix Multiplier Power

Kilo 1,000 3

Mega 1,000,000 6

Giga 1,000,000,000 9

Tera 1,000,000,000,000 12

Peta 1,000,000,000,000,000 15

Exa 1,000,000,000,000,000,000 18

Zetta 1,000,000,000,000,000,000,000 21

Yotta 1,000,000,000,000,000,000,000,000 24

(1988)
(1998)
(2008)
(20??)

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

 Credits for this talk include the IESP team
www.exascale.org

The International Exascale
Software Roadmap,
J. Dongarra, P. Beckman, et al.,
International Journal of High
Performance Computer
Applications 25(1), 2011, ISSN
1094-3420.

“Top 500” list positions #1 and #500
over the decades – exaflop/s by 2020?

c/o SciDAC Review 16, February 2010

(benchmarked each June and November)

1000X improvement in peak
flops and in attained flops
every decade, for 30+ years

13.6 GF/s
8 MB EDRAM

4 processors

1 chip

13.6 GF/s
2 GB DDRAM

32 compute cards

435 GF/s
64 GB

32 node cards

16 racks

222 TF/s
32 TB

Rack

System

Node Card

Compute Card

Chip

14 TF/s
2 TB

KAUST’s petascale system from
#34 in the world, November 2010
#6 in academia, November 2010

IBM’s BlueGene/P:
16K quad-core procs
with 2 FMADD/cycle
@ 850 MHz
= 0.222 Pflop/s

How to calculate peak flop/s
 Multiply together the number of processors, the number

of cores per processor, the number of floating point
operations that can be done in each core on each clock
cycle , and the clock rate in cycles per second:

!

(16 "1024) " 4 " 2 " 2 " (850 "106) # 0.222 "1015

16K quadcore dual FMADD 850 MHz

Layout of BG/P chip
 BG/P System on a chip:
 4 PowerPC 450 cores

w/dual FPUs, memory
controllers, ethernet
controller, adaptive
router with DMA, a
global reduction
network, 8MB of
embedded DRAM – all
in 208 million transistors
on a 0.13µm line width

 (a third of a trillion
transistors in Shaheen’s
processor chips, overall)

1.1 cm

Where to find the “big iron” today
 312 of the “Top 500” computer systems in the world are

operated by industry (http://www.top500.org/)

Sector #
sys

% share Rmax sum Rpeak sum Proc sum

Industry 312 62.4 8.99 Pf 16.33 Pf 1,547,276

Research 91 18.2 12.48 Pf 16.27 Pf 2,155,447

Academic 79 15.8 5.57 Pf 7.13 Pf 826,584

Government 9 1.8 0.58 Pf 0.76 Pf 74,744

Classified 5 1.0 0.14 Pf 0.20 Pf 22,844

Vendor 4 0.8 0.22 Pf 0.27 Pf 37,732

TOTALS 500 100.0 27.98 Pf 40.95 Pf 4,664,627

Petaflop/s

 Questions to consider
n Why the push to the exascale?
n What will systems a thousand times faster than today’s

petascale systems look like architecturally?
n What will be the implications of their budgets for

power and acquisition?
n What should we do about it to prepare, algorithmically?

1950 2000 2050

 confirm

 predict

Experimentation
& Observation

Simulation

discover

understand
Los Alamos

typical research
institution

FSU, KAUST &
others

SciDAC

Why push to extreme scale?
n  Better resolve model’s full, natural range of length or time scales
n  Accommodate physical effects with greater fidelity
n  Allow the model degrees of freedom in all relevant dimensions
n  Better isolate artificial boundary conditions (e.g., in PDEs) or better

approach realistic levels of dilution (e.g., in MD)
n  Combine multiple complex models
n  Solve an inverse problem, or perform data assimilation
n  Perform optimization or control
n  Quantify uncertainty
n  Improve statistical estimates

n  Operate without models (machine learning)

“Third paradigm”

“Fourth paradigm”

The third paradigm
The “third paradigm” paper (1986)

“During its spectacular rise, the computational has joined the
theoretical and the experimental branches of science…”
 – Peter D. Lax, in J. Stat. Phys., 43:749-756

The “Grand Challenge” paper (1989)
"Grand Challenges of Computational Science” … define

opportunities to open up vast new domains of scientific research,
domains that are inaccessible to traditional experimental or
theoretical models of investigation.” – Kenneth G. Wilson,

in Future Generation Computer Systems, 5:171-189

“….Authors in this volume … refine an
understanding of this new paradigm

from a variety of disciplinary
perspectives.”

 — Gordon Bell, Microsoft Research

The Data-centric world paper (2006)
“The data need to be curated with metadata,
stored under a schema with a controlled vocabulary, and
indexed and organized for quick and efficient temporal,
spatial, and associative search.”
– James N. Gray et al., in IEEE Computer, 39:110-112

The fourth paradigm

Combining the paradigms:
forward vs. inverse problems

forward problem

solution

inverse problem

model model

params

+ regularization

How would these needs be felt at, e.g.,
an oil company?

n  Better resolve model’s full, natural range of length or time scales
  Discretize a reservoir into more layers and horizontal cells

n  Accommodate physical effects with greater fidelity
  Replace black oil assumption with fuller compositional effects

n  Allow the model degrees of freedom in all relevant dimensions
  Here, all three space dimensions, plus time

n  Better isolate artificial boundary conditions or better approach
realistic levels of dilution
  Use additional cells outside of the production and injection zones to

buffer the zones where data is needed from unknown geology and
fluxes

n  Solve an inverse problem, or perform data assimilation
  Match simulation with drilling and historical production records to

better estimate unknown parameters in the model and nudge the
simulation towards reality, where and when reality is known

n  Combine multiple complex models
  Unify the simulations of adjacent fields to capture the effects of

producing one of them on the other, monitor production through
changes in seismic profiles, or model surface subsidence

n  Perform optimization or control
  Select a strategy for injection and pumping in the thousands of wells

per reservoir

How would these needs be felt at, e.g.,
an oil company?

n  Quantify uncertainty
  Given the many unresolvable uncertainties in program inputs, bound

the error in the outputs in terms of errors in the inputs

n  Improve statistical estimates
  Treating uncertain inputs as random, improve output estimates

How would these needs be felt at, e.g.,
an oil company?

c/o A. Dogru (used by permission)

Need for extreme scale goes far beyond
these, however!

n  Oil companies are vast, with dozens of reservoirs “upstream”
and many refineries and transportation systems “downstream”

n  Oil companies function under many constraints for product
supply and must seek to maximize profit while satisfying
output demands in many different product streams producible
from the same crude

n  Tens of thousands of “valves” (literal and figurative, like
workforce and other controls) need to be scheduled
continuously

n  Mathematically, this is a massive, nonlinear and possibly non-
robust constrained optimization problem – insatiably power
hungry

How should such resources be managed?
n  They are too complex for a self-contained, self-consistent theory
n  They are unsuitable for experiment, because you can only do the

experiment (e.g., exploiting a reservoir) once
n  Engineering heuristics are useful (and used!), but

  gone are the days when employees spent decades understanding a single
reservoir

  the external forcings (e.g., world economy) change daily, making history
less useful

n  Simulation is an incredibly useful tool for exploring scenarios
experimentally in a virtual world

n  Data mining and machine learning may be even more useful
tools in the future

Dominant findings on models and scaling
on today’s petascale simulations (ref: IESP)
n  Predominantly bulk synchronous, MPI and SPMD, either

domain-, particle-, or other object-decomposed
n  Electronic Structure codes, however, are dominantly not MPI,

but global shared memory (e.g., GlobalArrays)
n  Other models are Charm++ (NAMD) and distributed objects

built on top of active messages and Pthreads
n  Some codes have multiple phases with not necessarily

compatible load-balanced decompositions
n  Typically already running hybrid MPI/OpenMP with “small”

numbers of cores, up to 48
n  We can typically weak-scale without serious loss of scaling

out to the edge of today’s machines (300K cores), and
theoretically beyond

Dominant findings on resources
n  Memory bandwidth

  Majority of the apps are already bandwidth limited in most
phases even with relatively few cores

n  Flop/s per byte of storage
  Generally linear or log-linear, in weak scaling

n  I/O versus computation
  With notable exceptions that are I/O intensive, the majority of

our peta-apps need intensive I/O only at start-up and in dumping
the output

  We expect check-pointing to become much more intensive at the
exascale, and perhaps limiting, even with users taking charge of
check-pointing minimal state

Dominant findings on resources, cont.
n  Communication versus computation

  In weak scaling there is generally a constant ratio of near-
neighbor communication to computation, represented by a
minimum collections of vertices, cells, particles, etc., per
processor

n  Synchronization versus computation
  We require frequent global collectives

  At least once per timestep in evolutionary codes
  Even more frequently when implicit linear algebra needs to be performed

within each timestep

 Remaining presentation plan
n  Reflect briefly on progress in high-end scientific

computing
  as captured in ACM Gordon Bell prize trends
  as analyzed in some of the eight U.S. DOE “extreme scale”

workshops of 2009-2010 (extremescale.labworks.org)

n  Peek briefly at structure of a core motivating application
n  Take a look at a few hurdles and possible solutions in

algorithmic and programming model development arenas

Six orders of
magnitude in
20 years

Tracking third paradigm progress:
Gordon Bell Prize “peak performance”

2010 FMM Physiology 196,608 XT-5 780,000

Tracking third paradigm progress:
Gordon Bell Prize: “price performance”

Year Application System $ per Mflops

MMflop/s

1989 Reservoir modeling CM-2 2,500
1990 Electronic structure IPSC 1,250
1992 Polymer dynamics cluster 1,000
1993 Image analysis custom 154
1994 Quant molecular dyn cluster 333
1995 Comp fluid dynamics cluster 278
1996 Electronic structure SGI 159
1997 Gravitation cluster 56
1998 Quant chromodyn custom 12.5
1999 Gravitation custom 6.9
2000 Comp fluid dynamics cluster 1.9
2001 Structural analysis cluster 0.24

5.5 orders of
magnitude in
20 years

2009 Gravitation & turbulence cluster (GPU) 0.0081

Gedanken experiment:
How to use the palm date,

as its price slides downward?
In 2011, at $16/kg:

 eat, as a delicacy
By 2014, at $4/kg:

 substitute for other oils
and sugars

By 2017, at $1/kg:
 use as a feedstock for
biopolymers, plastics, etc.

By 2020, at $0.25/kg:
 heat homes

By 2023, at $0.06/kg:
 pave roads J

 The cost of computing has been on a curve much better than this for two decades. Finally, after everyone else,
scientists and engineers (very conservative people, on the whole) are planning increasing uses for it…

Whimsical remarks on simulation
progress measured by Bell, since 1988

n  If similar improvements in speed (106) had been realized
in the airline industry, a 19-hour flight (e.g., SIN-EWR)
would require one-fifteenth of a second today

n  If similar improvements in storage (104) had been realized
in the publishing industry, our office bookcases could hold
the book portion of the collection of the U.S. Library of
Congress (~20M volumes)

n  If similar reductions in cost (105) had been realized in the
higher education industry, tuition room and board (at a
college in the USA) would cost about $0.20 per year

 Exascale considerations
n  Applications

  What do we want to simulate at the exascale, why, and in what best
formulation or sets of formulations?

n  Architectures
  What are the hurdles of granularity, cost, power, programmability,

systems software, reliability (resilience) in delivering exascale
systems, and how can they be surmounted?

n  Algorithms
  How can we get the applications to run on architectures that are

physically and fiscally achievable (“co-design” of architecture and
application)

Philosophy of an algorithmicist
n  Applications are given (as function of time)
n  Architectures are given (as function of time)
n  Algorithms and software must be adapted or created to bridge to

hostile architectures for the sake of the complex applications
  as important as ever today, with transformation of Moore’s Law from

speed-based to concurrency-based, due to power considerations
  scalability still important, but new memory-bandwidth stresses arise

when on-chip memories are shared
  greatest challenge is lack of performance robustness of individual

cores, which can spoil load balance
n  Knowledge of algorithmic capabilities can usefully influence

  the way applications are formulated
  the way architectures are constructed

n  Knowledge of application and architectural opportunities can
usefully influence algorithmic development

How are problems like these solved at
the petascale today?

  Iterative methods based on domain decomposition and
message-passing
  Each individual processor works on a subdomain of

the original problem and exchanges information at its
boundaries with other processors that own subdomains
with which it interacts causally, to evolve in time or to
establish equilibrium (steady state)

  The programming model is SPMD/BSP/CSP
  Single Program, Multiple Data
  Bulk Synchronous Programming refers to alternating

nearly uniformly sized chunks of work on each
processor with bursts of exchanges of data

  a.k.a. Communicating Sequential Processes
  Nearly all successful large-scale simulations are built this

way today – and this may change radically at the exascale

SPMD parallelism
with domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23 A21 A22
rows assigned

to proc “2”

Domain decomposition
is relevant to any local stencil formulation

finite elements finite volumes

•  All lead to sparse Jacobian matrices

J=

node i

row i
•  However, the inverses are generally
dense; even the factors suffer
unacceptable fill-in in 3D
•  Want to solve in subdomains only, and
use to precondition full sparse problem

finite differences

uniform Cartesian
adaptive

n Krylov-Schwarz:
a linear solver “workhorse”

n Krylov
n accelerator

n spectrally adaptive

!

Ax = b

!

x =
v"V #{b,Ab,A 2b,!}
argmin {Av $ b}

n Schwarz
n preconditioner
n parallelizable

!

B"1Ax = B"1b

!

B"1 =#i Ri
T (RiARi

T)"1Ri

Workhorse innards: Krylov-Schwarz,
a Bulk Synchronous Process (“BSP”)

local
scatter

Jac-vec
multiply

precond
sweep

daxpy inner
product

Krylov
iteration

…

Idle time due to load imbalance becomes a
challenge at, say, one million cores, when one
processor can hold up all of the rest at a
synchronization point

P1:

P2:

Pn:


communication imbalance computation imbalance

What will first “general purpose” exaflop/s
machines look like?

n  Many paths beyond today’s CMOS silicon-based logic
n  Earliest and most significant post-CMOS device improvement

may be carbon nanotube memory, but not in 10 years
  up to tens of GB on a 1 cm-square die
  will deal directly with the “memory wall” problem

n  Two paths from peta- to exa-
  IBM: BlueGene’s successor, maybe at 22nm linewidth technology –

some architectural merger of BlueGene, Power, and Cell
  All others: GPGPU-based spinoff

n  At least for PDE-based scientific codes:
  programming model will still be message-passing (due to large legacy

code base), adapted to multicore processors beneath the MPI interface,
and made less synchronous

Prototype exascale hardware:
a heterogeneous, distributed memory
GigaHz KiloCore MegaNode system

c/o P. Beckman

~3

Hurdle #1: memory bandwidth eats up the

entire power budget

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 0.2 0.5 1 2

M
em

or
y

Po
w

er
 C

on
su

m
pt

io
n

in
 M

eg
aw

at
ts

 (M
W

)

Bytes/FLOP ratio (# bytes per peak FLOP)

Stacked JEDEC 30pj/bit 2018 ($20M)

Advanced 7pj/bit Memory ($100M)

Enhanced 4pj/bit Advanced Memory ($150M
cumulative)

Feasible Power Envelope (20MW)

c/o John Shalf, LBNL

Hurdle #2: memory capacity eats up the
entire fiscal budget

$0.00

$100.00

$200.00

$300.00

$400.00

$500.00

$600.00

16 32 64 128 256

C
os

t i
n

M
ill

io
ns

 o
f D

ol
la

rs

Petabytes of Memory

Cost in $M (8 gigabit modules)

Cost in $M (16 Gigabit modules)

1/2 of $200M system

c/o John Shalf, LBNL

Hurdle #3: power requires slower clocks
and greater concurrency

c/o SciDAC Review 16, February 2010

Implications
n  Expanding the number of nodes (processor-memory units) to

106 is not a serious threat to algorithms that lend themselves to
well-amortized precise load balancing (like PDEs)
  Provided that the nodes are performance reliable

n  The real challenge is expanding the number of cores on a node
to 103

  Must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less

n  It is already about 103 slower to to retrieve an operand from
main DRAM memory than to perform an arithmetic operation
– will get worse by a factor of ten
  Almost all operands must come from registers or upper cache

Implications, cont.
n  Draconian reduction required in power per flop and per byte

will make computing and copying data less reliable
  voltage difference between “0” and “1” will be reduced
  circuit elements will be smaller and subject to greater physical

noise per signal
  there will be more errors that must be caught and corrected

n  Power will have to be cycled off and on or clocks slowed and
speeded based on compute schedules and based on cooling
capacity
  makes per node performance rate unreliable

Sources of nonuniformity
n  System

  Manufacturing, dynamic power management, soft errors, hard
component failures, OS jitter, software-mediated resiliency,
TLB/cache performance variations, network contention, etc.

n  Algorithmic
  Physics at gridcell scale (e.g., table lookup, equation of state,

external forcing), discretization adaptivity, solver adaptivity,
precision adaptivity, etc.

n  Effects are similar when it comes to waiting at synchronization
points

n  Possible solutions for system nonuniformity will improve
programmability, too

Pax MPI is over

Pax MPI
(1994 - 2010)

Pax MPI
  1994-2010*
  Universal language

  enabled free trade in applications and libraries

  Safe porting
  codes linked and ran “first time” across desktops,

clusters, high-end systems

  Was protested, but conferred advantages

* MPI continues for a long time. However, the empire of MPI-only
begins to disintegrate into non-universal programming model groups.

Pax Romana

Pax Romana
  27 BC – 180 AD*
  Universal language
  Safe ports and roads
  Occupancy was protested, but conferred

advantages

 * Rome continues for centuries. However, the empire begins to
disintegrate into non-universal governments and cultures.

Some exascale themes
  Clock rates cease to increase while arithmetic capacity

increases dramatically w/concurrency*
  Storage capacity diverges exponentially below

arithmetic capacity
  Transmission capacity diverges exponentially below

arithmetic capacity
  Mean time between hardware interrupts shortens
  Billions of dollars/euros/etc. of scientific software hang

in the balance until better algorithms arrive to span the
architectural gap

*Moore’s Law (1965) does not end, but Dennard scaling (1974) does

Moans from application developers
n  The present consensus path to exascale is thousand-fold

manycore
  However, memory bandwidth is already limiting today’s low core count

nodes to less than 10% of peak on most apps, whose kernels offer little
cache reuse (e.g., stencil ops or sparse matvecs)

  Processors are cheap and (relative to memory) small in chip area and
relatively low in power, so there is no harm in having them in excess
most of the time, but the opportunities for exploiting the main new source
for performance are undemonstrated for most applications

n  While there is opportunity for combining today’s individually
high capability simulations into complex simulations, there is
no silver bullet for merging the data structures of the separate
applications
  The data copying inherent in the code coupling will likely prevent

exploitation of the apparent concurrency opportunities

Chief issues identified by apps groups of the
International Exascale Software Project
n  I/O
n  Fault tolerance
n Reproducibility of computations
n  Programming models and algorithms

I/O
n  For some important apps, I/O is a likely

bottleneck
  For input, for output (including visualization), or for

checkpointing, or any combination

n  I/O must be acknowledged as primary for many
apps (though certainly not all), but is beyond the
scope of this talk

Fault tolerance
n  IESP users reluctantly recognize that fault

tolerance is a shared responsibility
  It is too wasteful of I/O and processing cycles to

handle faults purely automatically

n Different types of faults may be handled different
ways, depending upon consequences evaluated by
scientific impact

n  Strategic, minimal workingset checkpoints can be
orchestrated by application developers and users

Reproducibility
n  IESP users realize that bit-level reproducibility is unnecessarily

expensive most of the time
n  Though scientific outcomes must be run- and machine-independent,

we have no illusions about bit-level reproducibility for individual
pairs of executions with the same inputs
  Since operands may be accessed in different orders, even floating point

addition is not commutative in parallel and on inhomogeneous hardware
platforms; this has been true for a long time

  A new feature, with an emphasis on low power (low voltage switching),
is that lack of reproducibility may emerge for many other (hardware-
based) reasons

  If applications developers are tolerant of irreproducibility for their own
reasons, e.g., for validation and verification through ensembles, then this
has implications for considering less expensive, less reliable hardware

Programming model
n  Prior to possessing exascale hardware, users can prepare

themselves by exploring new programming models
  on manycore and heterogeneous nodes

n  Attention to locality and reuse is valuable at all scales
  will produce performance paybacks today and in the future

n  New algorithms and data structures can be explored under the
assumption that flop/s are cheap and moving data is expensive

n  Bandwidth pressure can be reduced by considering mixed-
precision algorithms, using lower precision wherever possible

n  Relaxation of synchrony could relieve pressure on load
balance

Evolution of parallel programming models:
strong scaling within a node

shared memory
 (OpenMP)

P
n

 P
n

 P
n

 P
n

 P
n

 P
n

 P
n

 P
n

 P
n

 P

distributed memory
 (MPI)

local

n

 P
n

 P
n

 P
n

 P
n

 P

PGAS

local

n

 P
n

 P
n

 P
n

 P
n

 P

chip
shared

shared

shared
HPGAS

today’s 1-level models: shared or distributed

tomorrow’s 2- or 3-level models: hybrids

Benefits of 2-level parallelism for 3D FFT

0

10

20

30

40

50

60

128 256 512 1024 2048 4096

32 64 128 256 512 1024

P
e
rc

e
n

ta
g

e
 o

f
C

o
m

m

No of Nodes and Cores

Comm Perf of 3D FFT on Franklin

Comm MPI

Comm MPI + OpenMP

Just four
cores per
node

c/o John Shalf, LBNL

Hybrid programming model for a full application:
petascale bio-electro-magnetics

Two-pronged Approach (FEM/BEM)
  Cross-validate, verify, & build confidence in

unprecedented petascale results
  Evolve sub-mm resolution human body models
  Next generation EM solvers: FFT-accelerated integral-

equation solvers (BEM prong); HP-adaptive
differential-equation solvers (FEM prong); novel
preconditioned iterative solvers

  Target multi-core clusters: Nested distributed-/shared-
memory parallelism and hybrid programming (MPI/
OpenMP)

  High-fidelity petascale BIOEM simulations
  Shed light to controversial scientific and engineering

questions

High-Fidelity BIOEM Simulation
  Minimize health risks & increase efficiency of

wireless devices
  Existing results contradictory, e.g., do children’s

smaller heads absorb more radiation or allow deeper
penetration? Need reproducible, reliable, high-
accuracy, high-resolution simulations

  Solve coupled Maxwell’s EM and Penne’s Bio-Heat
Transfer equations : Human & device models must
resolve geometry, material, EM wavelength, and
thermal mechanisms (petascale problem)

  Advance the state-of-the-art: Develop novel petascale
BIOEM simulators, investigate and quantify modeling
& analysis errors

k
r
E
r

Mesh-­‐based	

Geometry	
 	

hp-­‐adap1ve	

FEM	

FFT-­‐accelerated	

BEM	

Samples

c/o Leszek Demkowicz, UTexas

Hybrid programming models not enough
n  Tools for monitoring the availability and predicted

performance of resources within an architecture-adaptive and
application-adaptive are improving

n  However, even perfect knowledge of resource capabilities at
every moment and perfect load balancers will not rescue
billion-thread SPMD implementations of PDE simulations,
etc.
  cost of rebalancing frequently is too large
  Amdahl penalty of failing to rebalance is fatal

n  Can write code in styles that do not require artifactual
synchronization

n  Critical path of a nonlinear implicit PDE solve is essentially
… lin_solve, bound_step, update; lin_solve, bound_step, update …

n  However, we often insert into this path things that could be done
less synchronously, because we have limited language
expressiveness
  Jacobian and preconditioner refresh
  Convergence testing
  Algorithmic parameter adaptation
  I/O, compression
  Visualization, data mining

Evolution of parallel programming models:
breaking the synchrony stronghold

Adaptation to
asynchronous programming styles

n  To take full advantage of such asynchronous algorithms, we
need to develop greater expressiveness in scientific
programming
  Create separate threads for logically separate tasks, whose priority is

a function of algorithmic state, not unlike the way a time-sharing OS
works

  Join priority threads in a directed acyclic graph (DAG), a task graph
showing the flow of input dependencies; fill idleness with noncritical
work or steal work

n  Steps in this direction
  Asynchronous Dynamic Load Balancing (ADLB) [Lusk (Argonne),

2009]
  Asynchronous Execution System [Steinmacher-Burrow (IBM), 2008]

Algorithmic adaptation to
asynchronous programming styles

n  Additive versions of algorithms are often available that
significantly relax synchronicity

n  Such algorithms have received a bad rap historically
  “chaotic relaxation,” Chazan & Miranker, 1969, for instance

n  However, they can sometimes be made virtually as good as their
multiplicative cousins
  “AFACx” versus “AFAC,” Lee, McCormick, Philip & Quinlan,

2003, for instance

 Peta to exa for algorithms
n  Things we need to do for exascale will help us at petascale and

terascale
  Reducing memory requirements and memory traffic
  Exploiting hybrid and less synchronous parallel programming models
  Co-design of hardware and software (for, e.g., power management)

n  Though it inveighs against the CS aesthetic of “separation of
concerns”, and involves more issues, co-design requires similar
attitude and aptitude as in, say, MPI programming today
  Applications programmers have “bit the bullet” and designed excellent

MPI-based codes, by using quality libraries designed and ported by
specialists

  Hopefully, we will be able to isolate applications programmers from
many of the hardware and software architectural details, just as we do
today from message-passing details

Peta to exa
n Billion-way parallelism of GigaHertz cores will not

significantly expand today’s million-way flat
parallelism at the node level
  MPI legacy code will still be usable on the “outside” on a

million nodes
  Changes will be mainly within a node, where we will need

to evolve thousand-way parallelism: “MPI+X”

n  Principal challenges from peta to exa are within the
node, and the burden is shared by the marketplace at
all scales of node aggregation

Path for scaling up applications
n  Weak scale applications up to distributed memory limits

  Proportional to number of nodes
n  Strong scale applications beyond this

  Proportional to cores per node/memory unit
n  Scale the workflow, itself

  Proportional to the number of instances (ensembles)
  Integrated end-to-end simulation

n  Co-design process is staged, with any of these types of scaling
valuable by themselves

n  Big question: does the software for co-design factor? Or is all
the inefficiency at the data copies at interfaces between the
components after a while?

Required software enabling technologies
 Model-related

  Geometric modelers
  Meshers
  Discretizers
  Partitioners
  Solvers / integrators
  Adaptivity systems
  Random no. generators
  Subgridscale physics
  Uncertainty

quantification
  Dynamic load balancing
  Graphs and

combinatorial algs.
  Compression

 Development-related
  Configuration systems
  Source-to-source

translators
  Compilers
  Simulators
  Messaging systems
  Debuggers
  Profilers

 Production-related
  Dynamic resource

management
  Dynamic performance

optimization
  Authenticators
  I/O systems
  Visualization systems
  Workflow controllers
  Frameworks
  Data miners
  Fault monitoring,

reporting, and recovery

High-end computers come
with little of this stuff.

Most has to be contributed
by the user community

Algorithmic Priority Research Directions (1)
n Advanced mathematical methods for scientific

understanding in exascale simulations,
including in situ
  Uncertainty quantification, intrusive and

nonintrusive
  Optimization, inverse problems, sensitivity
  Analysis and Visualization
  Validation and Verification

Algorithmic Priority Research Directions (2)
n Exascale algorithms that expose and exploit

multiple levels of parallelism
  Communication-reducing algorithms
  Synchronization-reducing algorithms
  Fault resilient algorithms

n  Support for multiphysics, multiscale methods
  Break the SPMD and BSP paradigms when joining

multiple different codes
  Stability of coupling

Algorithmic Priority Research Directions (3)
n Exascale algorithms for constructing and

adapting discrete objects
  Algorithms that deal with unpredictable, dynamic

workloads and have few flops to hide

n Mixed precision arithmetic, to use the lowest
precision required to achieve a given accuracy
outcome
  Improves runtime, power consumption
  Reformulate algorithms to find corrections, rather

than solutions

Progressive by-product
n The consolation for the architecture-induced hard

work of reducing synchrony is that algorithms have
been waiting for this freedom for a long time
  freedom to adapt the mesh or vary the timestep locally
  freedom to vary the physical models at the cells or particle

level
  Freedom to vary the precision

n Once the synchronization is thrown on the
programming model and runtime system, developers
are less constrained

Summary:
High reward R&D themes for algorithms

n Mixed precision arithmetic, to use the lowest precision
required to achieve a given accuracy outcome
  Improves runtime, power consumption
  Reformulate algs to find corrections, rather than solutions

n  Prioritization of critical path and noncritical tasks
  DAG scheduling of critical path tasks
  Allows taking advantage of asynchronicity between major

steps and adaptive load balancing for noncritical tasks

n Communication-reducing algorithms
n And, of course, better mathematical formulations

 Recapitulation
n  Reflected briefly on progress in high-end scientific computing
n  Peeked briefly at some motivating applications
n  Looked generically at PDE-based simulation and the basis of

continued optimism for its growth – capability-wise
n  Looked at some specific hurdles to and opportunities for

PDE-based simulation posed by high-end architecture

Kennedy’s challenge, 1962

 “We choose to do [these] things, not
because they are easy, but because
they are hard, because that goal will
serve to organize and measure the
best of our energies and skills,
because that challenge is one that we
are willing to accept, one we are
unwilling to postpone, and one
which we intend to win...”

Acknowledgment:
 today’s Peta-op/s machines

1012 neurons @ 1 KHz = 1 PetaOp/s
(volume 1.5 liters, weight 3 lbs, consumes 20 W)

Zetta-scale, anyone?

