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The premise of this paper is the observation that the engineering community in general,
and the NASA aeronautics program in particular, have not been active participants in the
renewed interest in high performance computing at the national level. Advocacy for high
performance computing has increasingly been taken up by the science community with
the argument that computational methods are becoming a third pillar of scientific discov-
ery alongside theory and experiment. Computational engineering, on the other hand, has
continually been relegated to a set of mature software tools which run on commodity hard-
ware, with the notion that engineering problems are not complex enough to warrant the
deployment of state-of-the-art hardware on such a vast scale. We argue that engineering
practices can benefit equally from an aggressive program in high performance computa-
tional methods, and that these problems are at least as important as science problems,
particularly with regards to any national competitiveness agenda. Because NASA aero-
nautics has historically been a principal driver of computational engineering research and
development, the current situation represents an opportunity for the NASA aeronautics
program to resume its role as a leading advocate for high performance computational engi-
neering at the national level. We outline a sample set of Grand Challenge problems which
are used to illustrate the potential benefits a reinvigorated program could produce, and use
these examples to identify critical barriers to progress and required areas of investment.
We conclude by noting that other communities have spent significant efforts in formulating
the case for increased investment in high performance computing activities, and that a
similar roadmap will be required for the engineering community.

I. Introduction

In 1976, the ILLIAC IV supercomputer went into production use at the NASA Ames Research Center.

Although the performance of this machine was below original design expectations, the ILLIAC IV never-

theless constituted the most powerful supercomputer in the world at the time,
1

and gave NASA researchers

an order of magnitude more computational power than had previously been available. The driving appli-

cations in the agency at that time were none other than computational fluid dynamics (CFD), and NASA

quickly became the high-performance computing (HPC) leader in this field, thanks in part to visionary lead-

ership, state-of-the-art facilities, and forward thinking education and hiring practices.
2

The rapid pace of

development and early success of CFD within the NASA aeronautics program led to the creation of the Nu-

merical Aerodynamic Simulator (NAS), which hosted a variety of leading edge supercomputers over the 80’s

and 90’s. When the US Government developed a comprehensive multi-agency program for high-performance

computing under the High-Performance Computing and Communication Program in the 1990’s (HPCCP),
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Audience: CFD’ers, not CS’ers 
n  In the context of the NASA mission, we in computer science 

and applied mathematics are by federal parlance “enabling 
technologists” 
  modeling, numerical algorithms, discrete algorithms, 

visualization, programming models, etc. 

n  We are often “first marines on the beach” with respect to 
“extreme” computer architectures 
  vector, distributed memory, shared memory, heterogeneous 

n  Relevance to “non-extremists”: the extreme architectures of 
today are lab-group machines in a decade 
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Simulation driven by price and capability 

 
 

Year 

Cost per 
delivered 
Gigaflop/s 

1989 $2,500,000        
1999 $6,900 
2009 $8 

 
 

Year 

Gigaflop/s 
delivered to 
applications 

1988 1 
1998 1,020 
2008 1,350,000 

By the Gordon Bell Prize, simulation cost per performance has 
improved by nearly a million times in two decades. Performance on 
real applications (e.g., mechanics, materials, petroleum reservoirs, 
gravitation) has improved more than a million times. 

Gordon Bell 
Prize: Peak 
Performance 

Gordon Bell 
Prize: Price 
Performance 

SCGF 30 July 2012 
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  In 2012, at $1,150./ton:  
  make sandwiches 

  By 2015, at $115./ton:  
  make recipe substitutions 

  By 2018, at $11.50/ton:  
  use as feedstock for plastics, etc. 

  By 2021, at $1.15/ton:  
  heat homes 

  By 2024, at $0.115/ton:  
  pave roads J 

 

Thought experiment: 
How to use peanuts as price per ton falls?* 

The cost of computing has been on a curve like this for two 
decades and promises to continue. Like everyone else, scientists 
and engineers plan increasing uses for it… 

NIA 6 Aug 2012 * inspired by Dean Chapman’s 1979 Dryden Lecture 
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Balance shift in modality of scientific discovery 
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Moore’s Law: exponential growth in time 

Attributed to 
Gordon Moore of 
Intel from a paper in 
1965 projecting 
CMOS transistor 
density, the term is 
applied today 
throughout science 
and technology 

NIA 6 Aug 2012 
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“Moore’s Law” for fusion energy simulations 

Figure from DOE “SCaLeS report” Volume 2 (Keyes et al., 2004) NIA 6 Aug 2012 
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Combustion: “Effective speed” increases came from 
both faster hardware and improved algorithms. 
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year 

relative 
speedup 

Moore’s Law and numerical algorithms 
  First popularized in the 1992 NITRD bluebook: apply successive generations of 

algorithms to a fixed problem (“Poisson equation”) 
  In 24 “doubling times” (1.5 years) for Moore’s Law for transistor density, better 

algorithms (software) contributed as much as better hardware 
  224≈16 million ⇒ 6 months of computing now takes 1 second on fixed hardware* 
  Two factors of 16 million each if the best algorithm runs on the best hardware! 

*algorithmic factor of improvement increases with problem size 

Gaussian Elimination 

Gauss-Seidel 

Successive Over-relaxation 

Conjugate Gradients 

Multigrid 

NIA 6 Aug 2012 
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Why push to extreme scale? 
(DOE CSGF application essay question #3) 
n  Better resolve model’s full, natural range of length or time scales 
n  Accommodate physical effects with greater fidelity 
n  Allow the model degrees of freedom in all relevant dimensions  
n  Better isolate artificial boundary conditions (e.g., in PDEs) or better 

approach realistic levels of dilution (e.g., in MD) 
n  Combine multiple complex models 
n  Solve an inverse problem, or perform data assimilation  
n  Perform optimization or control 
n  Quantify uncertainty 
n  Improve statistical estimates  

n  Operate without models (machine learning)  

“Third paradigm” 

“Fourth paradigm” 
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Why push to extreme scale? 
(AIAA paper, Mavriplis et al., June 2007) 

Digital Flight 

Design/Optimization 

Propulsion 

* Figures used by permission; see Mavriplis et al. 2007 
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www.exascale.org 

The International Exascale 
Software Roadmap,  
J. Dongarra, P. Beckman, et al., 
International Journal of High 
Performance Computer 
Applications 25(1), 2011, ISSN 
1094-3420. 
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Extrapolating exponentials is unwise 
n  Scientific computing world at a crossroads w.r.t. extreme 

scale 
n  Proceeded steadily for three decades from mega- (1970s) to 

giga- (1988) to tera- (1998) to peta- (2008) with same 
programming model and same algorithms 
  exa- is qualitatively different and will be much harder 

n  Core numerical analysis and scientific computing will 
ultimately confront exascale to maintain sponsor relevance 
  though obviously, there remain many mathematically fruitful 

directions are architecture-neutral 
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NASA CFD relevance 
n Exascale’s extremes change the game 

  mathematicians are on the front line 
  without contributions in the form of new mathematics (including 

statistics), the passage to the exascale will yield little fruit 

  mathematical scientists will find the computational power 
to do things many have wanted 
  room for creativity in “post-forward” problems (inverse 

problems and data assimilation) 
  mathematical scientists will participate in cross-disciplinary 

integration – “third paradigm” and “fourth paradigm” 
  remember that exascale at the lab means petascale on the desk 

n Let’s mention some mathematical opportunities, 
after quickly reviewing the hardware challenges 



NIA, 6 Aug 2012 

Why exa- is different 

(Intel Sandy Bridge, 2.27B transistors) 

c/o T. Schulthess (ETHZ); c/o P. Kogge (ND) et al. 

Going across the die requires up to an order of magnitude more! 
DARPA study predicts that by 2019: 
u  Double precision FMADD flop: 11pJ 
u  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall) 

Which steps of FMADD take more energy?  

input 
input 

input 

output 

four 
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Why exa- is different, cont. 

Moore’s Law (1965) does not end but 
Dennard’s MOSFET scaling (1972) does 

Eventually processing will be 
limited by  transmission 

Robert Dennard, IBM 
(inventor of DRAM, 1966) 
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What will first “general purpose” exaflop/s 
machines look like? 

n  Hardware: many potentially exciting paths beyond today’s 
CMOS silicon-etched logic, but not commercially at scale 
within the decade 

n  Software: many ideas for general-purpose and domain-
specific programming models beyond “MPI + X”, but not 
penetrating the main CS&E workforce within the decade 
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Prototype exascale hardware:  
a heterogeneous, distributed memory 
GigaHz KiloCore MegaNode system 

c/o P. Beckman (ANL) 

~3 
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Some exascale themes 

  Clock rates cease to increase while arithmetic capacity 
continues to increase dramatically w/concurrency 
consistent with Moore’s Law 

  Storage capacity diverges exponentially below 
arithmetic capacity 

  Transmission capacity diverges exponentially below 
arithmetic capacity 

  Mean time between hardware interrupts shortens 
  Billions of dollars of scientific software hang in the 

balance until better algorithms arrive to span the 
architectural gap 
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Hurdle #1: power requires slower clocks 
and greater concurrency 

c/o SciDAC Review 16, February 2010 
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Hurdle #2: memory bandwidth could eat 

up the entire power budget 
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Hurdle #3: memory capacity could eat 
up the entire fiscal budget 
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Implications of operating on the edge 
n  Draconian reduction required in power per flop and per 

byte will make computing and copying data less reliable 
  voltage difference between “0” and “1” will be reduced 
  circuit elements will be smaller and subject to greater 

physical noise per signal 
  there will be more errors that must be caught and corrected 

n  Power will have to be cycled off and on or clocks slowed 
and speeded based on compute schedules and based on 
cooling capacity 
  makes per node performance rate unreliable 
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Implications of operating on the edge 
n  Expanding the number of nodes (processor-memory units)  

beyond 106 would not a serious threat to algorithms that lend 
themselves to well-amortized precise load balancing  
  provided that the nodes are performance reliable 

n  A real challenge is expanding the number of cores on a node 
to 103 

  must be done while memory and memory bandwidth per node 
expand by (at best) ten-fold less (basically “strong” scaling) 

n  It is already about 103 slower to to retrieve an operand from 
main DRAM memory than to perform an arithmetic 
operation – will get worse by a factor of ten 
  almost all operands must come from registers or upper cache 
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“Missing” mathematics 
n New formulations with  

  greater arithmetic intensity (flops per bytes moved 
into and out of registers and upper cache) 

  reduced communication 
  reduced synchronization 
  assured accuracy with (adaptively) less floating-

point precision 
n Quantification of trades between limiting resources 
n Plus all of the exciting analytical agendas that 

exascale is meant to exploit 
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Arithmetic intensity illustration 

Roofline model of 
numerical kernels on 
an NVIDIA C2050 
GPU (Fermi). The 
‘SFU’ label is used 
to indicate the use of 
special function 
units and ‘FMA’ 
indicates the use of 
fused multiply-add 
instructions.  
 
(The order of fast 
multipole method 
expansions was set 
to p = 15.) 

c/o L. Barba (BU); cf. “Roofline Model” of S. Williams (Berkeley) 
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n  Amortize communication over many computational steps 
  s-step Krylov methods: power kernels with wide halos 
  “tall skinny QR”: recursively double the row-scope of independent 

QRs 
  Block Krylov methods: solve b several independent systems at once 

with improved convergence (based on λmax/λb rather than λmax/λmin) 

n  Enable less synchrony between inner loop steps  
  new synchronization-reducing sparse matrix-vector multiply on 

IBM’s SPI environment in BG/Q 
  perform local multiplies while pushing data to neighbors and finish 

up as off-processor data becomes available 

Classical ideas in communication reduction 
and synchronization reduction for Ax=b 
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Miracles “need not apply” 

n We should not expect to escape causal dependencies 
  if the input-to-output map of a problem description has 

all-to-all data dependencies, like an elliptic PDE Green’s 
function, and if we need the solution accurately 
everywhere, we will have all-to-all communication 

n But we should ask fundamental questions: 
  for the science of interest, do we need to evaluate the 

output everywhere? 
  is there another formulation that can produce the same 

required scientific observables in less time and energy? 
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How are most workhorse simulations 
implemented at the infra-petascale today? 

n  Iterative methods based on data decomposition and 
message-passing 
  each individual processor works on a portion of the original 

problem and exchanges information at its boundaries with 
other processors that own portions with which it interacts 
causally, to evolve in time or to establish equilibrium 

  computation and neighbor communication are both fully 
parallelized and their ratio remains constant in weak scaling 

n The programming model is SPMD/BSP/CSP 
  Single Program, Multiple Data 
  Bulk Synchronous Programming  
  Communicating Sequential Processes 



NIA, 6 Aug 2012 

Estimating scalability  
 n  Given complexity estimates of the leading terms of: 

  the concurrent computation (per iteration phase) 
  the concurrent communication 
  the synchronization frequency 

n  And a model of the architecture including: 
  internode communication (network topology and protocol reflecting 

horizontal memory structure) 
  on-node computation (effective performance parameters including 

vertical memory structure) 

n  One can estimate optimal concurrency and optimal 
execution time 
  on per-iteration basis 
  simply differentiate time estimate in terms of problem size N and 

processor number P with respect to P 
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3D stencil computation weak scaling 
(assume fast local network, tree-based global reductions) 

n  Total wall-clock time per iteration (ignoring local comm.) 

n  For optimal P,                , or   
     
    or 
 
n   P can grow linearly with N, and running time increases 

“only” logarithmically – as good as weak scaling can be! 
n  Problems: (1) assumes perfect synchronization,  
                       (2) log of a billion may be “large”  

T (N,P) = A N
P
+C logP

!T
!P

= 0 !A N
P2

+
C
P
= 0

Popt =
A
C
N
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SPMD parallelism w/ domain decomposition: 
an endangered species? 

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian) 

Ω1 

Ω2 

Ω3 

A23 A21 A22 
rows assigned 

to proc “2” 
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Workhorse innards: e.g., Krylov-Schwarz,  
a bulk synchronous implicit solver 

local 
scatter 

Jac-vec 
multiply 

precond 
sweep 

daxpy  inner     
product 

Krylov 
iteration 

…

Idle time due to load imbalance becomes a 
challenge at, say, one billion cores, when 
one processor can hold up all of the rest at 
a synchronization point 

P1: 

P2: 

Pn: 


communication imbalance computation imbalance 
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Our programming idiom is nested loops, e.g.,  
Newton-Krylov-Schwarz 

  for (k = 0; k < n_Newton; k++) {   
     compute nonlinear residual and Jacobian   

            for (j = 0; j < n_Krylov; j++) {   
           forall (i = 0; i < n_Precon ; i++) { 

                          solve subdomain problems concurrently 
                  } // End of loop over subdomains  
                  perform Jacobian-vector product 
                  enforce Krylov basis conditions 
                  update optimal coefficients  
                  check linear convergence 
             } // End of linear solver 
             perform DAXPY update  
             check nonlinear convergence 
        } // End of nonlinear loop 

Newton 
loop 

Krylov 
loop 

concurrent 
preconditioner 

loop 

Outer loops (not shown): continuation, implicit timestepping, optimization 
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Dataflow Illustration: Generalized Eigensolver 

c/o H. Ltaief (KAUST) 
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These loops, with their artifactual orderings, 
need to be replaced with DAGs 

  Diagram shows a 
dataflow ordering of the 
steps of a 4×4 
symmetric generalized 
eigensolver 

  Nodes are tasks, color-
coded by type, and 
edges are data 
dependencies 

  Time is vertically 
downward 

c/o H. Ltaief (KAUST) 
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Multiphysics w/ legacy codes: 
an endangered species? 

n  Many multiphysics codes operate like this, where the models may 
occupy the same domain in the bulk (e.g., reactive transport) or 
communicate at interfaces (e.g., ocean-atmosphere)* 

n  The data transfer cost represented by the blue and green arrows 
may be much higher than the computation cost of the models, 
even apart from first-order operator splitting error and possible 
instability  

Model 1 

Model 2
(subcycled) 

*see Keyes, et al., 2011 paper from DOE ICiS workshop for IJHPCA 
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Many codes have the algebraic and software 
structure of multiphysics 

  Exascale is motivated by these: 
  uncertainty quantification, inverse problems, 

optimization, immersive visualization and steering 

  These may carry auxiliary data structures to/from 
which blackbox model data is passed and they act 
like just another “physics” to the hardware 
  pdfs, Lagrange multipliers, etc. 

  Today’s separately designed blackbox algorithms 
for these may not live well on exascale hardware: co-
design may be required due to data motion 
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Multiphysics layouts must invade blackboxes 

ocean 
atm 

ice 

c/o W. D. Gropp (UIUC) 

n  Each application must 
first be ported to 
extreme scale 
(distributed, hierarchical 
memory) 

n  Then applications may 
need to be interlaced at 
the data structure level 
to minimize copying and 
allow work stealing at 
synchronization points 
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Bad news/good news (1) 
  One may have to control data motion 

  carries the highest energy cost in the exascale 
computational environment 

  One finally will get the privilege of 
controlling the vertical data motion 
  horizontal data motion under control of users under Pax 

MPI, already  
  but vertical replication into caches and registers was 

(until now with GPUs) scheduled and laid out by 
hardware and runtime systems, mostly invisibly to users 
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Bad news/good news (2) 
  “Optimal” formulations and algorithms may lead 

to poorly proportioned computations for exascale 
hardware resource balances 
  today’s “optimal” methods presume flops are expensive and 

memory and memory bandwidth are cheap 

  Architecture may lure users into more 
arithmetically intensive formulations (e.g., fast 
multipole, lattice Boltzmann, rather than mainly 
PDEs) 
  tomorrow’s optimal methods will (by definition) evolve to 

conserve what is expensive 
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Bad news/good news (3) 
  Hardware nonuniformity may force 

abandonment of the Bulk Synchronous 
Programming (BSP) paradigm 
  it will be impossible for the user to control load 

balance sufficiently to make it work 

  Hardware and algorithmic nonuniformity will 
be indistinguishable at the performance level 
  good solutions for the dynamically load balancing in 

systems space will apply to user space, freeing users 
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Bad news/good news (4) 
  Default use of high precision may come to an end, 

as wasteful of storage and bandwidth 
  we will have to compute and communicate “deltas” between 

states rather than the full state quantities, as we did when double 
precision was expensive (e.g., iterative correction in linear 
algebra) 

  a combining network node will have to remember not just the last 
address, but also the last values, and send just the deltas 

  Equidistributing errors properly while 
minimizing resource use will lead to innovative 
error analyses in numerical analysis 
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Bad news/good news (5) 
  Fully deterministic algorithms may simply come 

to be regarded as too synchronization-vulnerable 
  Rather than wait for data, we may infer it, taking into account 

sensitivity to poor  guesses, and move on  

  A rich numerical analysis of algorithms that 
make use of statistically inferred “missing” 
quantities may emerge 
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How will PDE computations adapt? 
n  Programming model will still be message-passing (due to 

large legacy code base), adapted to multicore or hybrid 
processors beneath a relaxed synchronization MPI-like 
interface 

n  Load-balanced blocks, scheduled today with nested loop 
structures will be separated into critical and non-critical 
parts 

n  Critical parts will be scheduled with directed acyclic 
graphs (DAGs) 

n  Noncritical parts will be made available for work-stealing 
in economically sized chunks 
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Adaptation to  
asynchronous programming styles 

n  To take full advantage of such asynchronous algorithms, we 
need to develop greater expressiveness in scientific 
programming 
  create separate threads for logically separate tasks, whose priority is 

a function of algorithmic state, not unlike the way a time-sharing OS 
works 

  join priority threads in a directed acyclic graph (DAG), a task graph 
showing the flow of input dependencies; fill idleness with noncritical 
work or steal work 

n  Steps in this direction  
  Asynchronous Dynamic Load Balancing (ADLB) [Lusk (Argonne), 

2009] 
  Asynchronous Execution System [Steinmacher-Burrow (IBM), 2008]  
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n  Can write code in styles that do not require artifactual 
synchronization 

n  Critical path of a nonlinear implicit PDE solve is essentially 
… lin_solve, bound_step, update; lin_solve, bound_step, update … 

n  However, we often insert into this path things that could be done 
less synchronously, because we have limited language 
expressiveness 
  Jacobian and preconditioner refresh 
  convergence testing 
  algorithmic parameter adaptation 
  I/O, compression 
  visualization, data mining 

 

Evolution of Newton-Krylov-Schwarz: 
breaking the synchrony stronghold 
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Sources of nonuniformity 
n  System 

  manufacturing, OS jitter, TLB/cache performance variations, 
network contention, dynamic power management, soft errors, hard 
component failures, software-mediated resiliency, etc. 

n  Algorithmic 
  physics at gridcell/particle scale (e.g., table lookup, equation of 

state, external forcing), discretization adaptivity, solver adaptivity, 
precision adaptivity, etc. 

n  Effects are similar when it comes to waiting at 
synchronization points 

n  Possible solutions for system nonuniformity will improve 
programmability, too 
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Programming practice 
n  Prior to possessing exascale hardware, users can prepare 

themselves by exploring new programming models  
  on manycore and heterogeneous nodes 

n  Attention to locality and reuse is valuable at all scales  
  will produce performance paybacks today and in the future 
  domains of coherence will be variable and hierarchical 

n  New algorithms and data structures can be explored 
under the assumption that flop/s are cheap and moving 
data is expensive 

n  Independent tasks that have complementary resource 
requirements can be interleaved in time in independently 
allocated spaces 
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Path for scaling up applications 
n  Weak scale applications up to distributed memory limits 

  proportional to number of nodes 
n  Strong scale applications beyond this 

  proportional to cores per node/memory unit 
n  Scale the workflow, itself 

  proportional to the number of instances (ensembles) 
  integrated end-to-end simulation 

n  Co-design process is staged, with any of these types of 
scaling valuable by themselves 

n  Big question: does the software for co-design factor? Or is 
all the inefficiency at the data copies at interfaces between 
the components after a while? 
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Required software enabling technologies 
      Model-related 

  Geometric modelers 
  Meshers 
  Discretizers 
  Partitioners 
  Solvers / integrators 
  Adaptivity systems 
  Random no. generators 
  Subgridscale physics  
  Uncertainty 

quantification 
  Dynamic load balancing 
  Graphs and 

combinatorial algs. 
  Compression  
 

        Development-related        
u  Configuration systems 
u  Source-to-source 

translators 
u  Compilers 
u  Simulators 
u  Messaging systems 
u  Debuggers 
u  Profilers 
 

      Production-related 
u  Dynamic resource 

management 
u  Dynamic performance 

optimization 
u  Authenticators 
u  I/O systems 
u  Visualization systems 
u  Workflow controllers 
u  Frameworks 
u  Data miners 
u  Fault monitoring, 

reporting, and recovery 

High-end computers come 
with little of this stuff. 

Most has to be contributed 
by the user  community 
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Kennedy’s Challenge, 1962 

    “We choose to do [these] things, 
not because they are easy, but 
because they are hard, because 
that goal will serve to organize and 
measure the best of our energies 
and skills, because that challenge is 
one that we are willing to accept, 
one we are unwilling to postpone, 
and one which we intend to win...”  
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Acknowledgment: 
 today’s Peta-op/s machines  

1012 neurons @ 1 KHz = 1 PetaOp/s 
1.4 kilograms, 20 Watts 



See 2011 special issue of Comptes Rendus 

Exaflop/s: The why and the 
how, D. E. Keyes, Comptes 
Rendus de l’Academie des 
Sciences 339, 2011, 70—77. 


