
NIA, 6 Aug 2012

Missing Mathematics for
 Extreme-scale CFD

David Keyes

Dean, Division of Mathematical and Computer Sciences and Engineering,
King Abdullah University of Science and Technology

&
Department of Applied Physics and Applied Mathematics

Columbia University

2002	

2003	

2003-­‐2004	
 (2	
 vol	
)	

2004	

	
 2006	

2006	

2007	

Context: decade of promise
from tera to peta

Fusion	
 Simula,on	

Project	

June	
 2007	

2007	
 These are
downloadable;
e-mail me if needed

18th AIAA Computational Fluid Dynamics Conference, June 25–28, 2007, Miami, FL

Petaflops Opportunities for the NASA Fundamental

Aeronautics Program

Dimitri J. Mavriplis ∗

David Darmofal †

David Keyes ‡

Mark Turner §

The premise of this paper is the observation that the engineering community in general,
and the NASA aeronautics program in particular, have not been active participants in the
renewed interest in high performance computing at the national level. Advocacy for high
performance computing has increasingly been taken up by the science community with
the argument that computational methods are becoming a third pillar of scientific discov-
ery alongside theory and experiment. Computational engineering, on the other hand, has
continually been relegated to a set of mature software tools which run on commodity hard-
ware, with the notion that engineering problems are not complex enough to warrant the
deployment of state-of-the-art hardware on such a vast scale. We argue that engineering
practices can benefit equally from an aggressive program in high performance computa-
tional methods, and that these problems are at least as important as science problems,
particularly with regards to any national competitiveness agenda. Because NASA aero-
nautics has historically been a principal driver of computational engineering research and
development, the current situation represents an opportunity for the NASA aeronautics
program to resume its role as a leading advocate for high performance computational engi-
neering at the national level. We outline a sample set of Grand Challenge problems which
are used to illustrate the potential benefits a reinvigorated program could produce, and use
these examples to identify critical barriers to progress and required areas of investment.
We conclude by noting that other communities have spent significant efforts in formulating
the case for increased investment in high performance computing activities, and that a
similar roadmap will be required for the engineering community.

I. Introduction

In 1976, the ILLIAC IV supercomputer went into production use at the NASA Ames Research Center.

Although the performance of this machine was below original design expectations, the ILLIAC IV never-

theless constituted the most powerful supercomputer in the world at the time,
1

and gave NASA researchers

an order of magnitude more computational power than had previously been available. The driving appli-

cations in the agency at that time were none other than computational fluid dynamics (CFD), and NASA

quickly became the high-performance computing (HPC) leader in this field, thanks in part to visionary lead-

ership, state-of-the-art facilities, and forward thinking education and hiring practices.
2

The rapid pace of

development and early success of CFD within the NASA aeronautics program led to the creation of the Nu-

merical Aerodynamic Simulator (NAS), which hosted a variety of leading edge supercomputers over the 80’s

and 90’s. When the US Government developed a comprehensive multi-agency program for high-performance

computing under the High-Performance Computing and Communication Program in the 1990’s (HPCCP),

∗Professor, Department of Mechanical Engineering, University of Wyoming, AIAA Associate Fellow.
†Associate Professor, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Member AIAA.
‡Professor, Department of Applied Physics and Applied Mathematics, Columbia University.
§Research Professor, Department of Aerospace Engineering & Engineering Mechanics, University of Cincinnati, AIAA As-

sociate Fellow.
Copyright c� 2007 by Dimitri J. Mavriplis. Published by the American Institute of Aeronautics and Astronautics, Inc. with

permission.

1 of 36

American Institute of Aeronautics and Astronautics Paper 2007-4084

2007	

	
 Mathema,cal	

Challenges	
 for	
 the	

Department	
 of	

Energy	
 	

January	
 2008	

2008	

2010	

	
 2010	

	
 2011	

NIA, 6 Aug 2012

Audience: CFD’ers, not CS’ers
n  In the context of the NASA mission, we in computer science

and applied mathematics are by federal parlance “enabling
technologists”
  modeling, numerical algorithms, discrete algorithms,

visualization, programming models, etc.

n  We are often “first marines on the beach” with respect to
“extreme” computer architectures
  vector, distributed memory, shared memory, heterogeneous

n  Relevance to “non-extremists”: the extreme architectures of
today are lab-group machines in a decade

 NITRD Symposium, 16 Feb 2012

Simulation driven by price and capability

Year

Cost per
delivered
Gigaflop/s

1989 $2,500,000
1999 $6,900
2009 $8

Year

Gigaflop/s
delivered to
applications

1988 1
1998 1,020
2008 1,350,000

By the Gordon Bell Prize, simulation cost per performance has
improved by nearly a million times in two decades. Performance on
real applications (e.g., mechanics, materials, petroleum reservoirs,
gravitation) has improved more than a million times.

Gordon Bell
Prize: Peak
Performance

Gordon Bell
Prize: Price
Performance

SCGF 30 July 2012

 NITRD Symposium, 16 Feb 2012

  In 2012, at $1,150./ton:
  make sandwiches

  By 2015, at $115./ton:
  make recipe substitutions

  By 2018, at $11.50/ton:
  use as feedstock for plastics, etc.

  By 2021, at $1.15/ton:
  heat homes

  By 2024, at $0.115/ton:
  pave roads J

Thought experiment:
How to use peanuts as price per ton falls?*

The cost of computing has been on a curve like this for two
decades and promises to continue. Like everyone else, scientists
and engineers plan increasing uses for it…

NIA 6 Aug 2012 * inspired by Dean Chapman’s 1979 Dryden Lecture

 NITRD Symposium, 16 Feb 2012

1950 2000 2050

confirm

predict Experimentation
 & Observation

Simulation

discover

understand
Los Alamos

typical research
organization

computationally
aware organization

SciDAC

0%

100%

Balance shift in modality of scientific discovery

NIA 6 Aug 2012

 NITRD Symposium, 16 Feb 2012

Moore’s Law: exponential growth in time

Attributed to
Gordon Moore of
Intel from a paper in
1965 projecting
CMOS transistor
density, the term is
applied today
throughout science
and technology

NIA 6 Aug 2012

 NITRD Symposium, 16 Feb 2012

“Moore’s Law” for fusion energy simulations

Figure from DOE “SCaLeS report” Volume 2 (Keyes et al., 2004) NIA 6 Aug 2012

 NITRD Symposium, 16 Feb 2012

0

1

2

3

4

5

6

7

8

9

10

1980 1990 2000 2010

Calendar Year

Lo
g

Ef
fe

ct
iv

e
G

ig
aF

LO
PS

High Order

Autocode

ARK integrator
complex chem Higher

order
AMR

NERSC
RS/6000

NERSC
SP3

Cray 2

AMR

Low Mach

“Moore’s Law” for clean combustion simulations

Figure from DOE “SCaLeS report” Volume 2 (Keyes et al., 2004)

Combustion: “Effective speed” increases came from
both faster hardware and improved algorithms.

100

101

102

103

104

105

106

107

108

109

1010

NIA 6 Aug 2012

 NITRD Symposium, 16 Feb 2012

year

relative
speedup

Moore’s Law and numerical algorithms
  First popularized in the 1992 NITRD bluebook: apply successive generations of

algorithms to a fixed problem (“Poisson equation”)
  In 24 “doubling times” (1.5 years) for Moore’s Law for transistor density, better

algorithms (software) contributed as much as better hardware
  224≈16 million ⇒ 6 months of computing now takes 1 second on fixed hardware*
  Two factors of 16 million each if the best algorithm runs on the best hardware!

*algorithmic factor of improvement increases with problem size

Gaussian Elimination

Gauss-Seidel

Successive Over-relaxation

Conjugate Gradients

Multigrid

NIA 6 Aug 2012

NIA, 6 Aug 2012

Why push to extreme scale?
(DOE CSGF application essay question #3)
n  Better resolve model’s full, natural range of length or time scales
n  Accommodate physical effects with greater fidelity
n  Allow the model degrees of freedom in all relevant dimensions
n  Better isolate artificial boundary conditions (e.g., in PDEs) or better

approach realistic levels of dilution (e.g., in MD)
n  Combine multiple complex models
n  Solve an inverse problem, or perform data assimilation
n  Perform optimization or control
n  Quantify uncertainty
n  Improve statistical estimates

n  Operate without models (machine learning)

“Third paradigm”

“Fourth paradigm”

NIA, 6 Aug 2012

Why push to extreme scale?
(AIAA paper, Mavriplis et al., June 2007)

Digital Flight

Design/Optimization

Propulsion

* Figures used by permission; see Mavriplis et al. 2007

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

 For exascale background, see
www.exascale.org

The International Exascale
Software Roadmap,
J. Dongarra, P. Beckman, et al.,
International Journal of High
Performance Computer
Applications 25(1), 2011, ISSN
1094-3420.

NIA 6 Aug 2012

NIA, 6 Aug 2012

Extrapolating exponentials is unwise
n  Scientific computing world at a crossroads w.r.t. extreme

scale
n  Proceeded steadily for three decades from mega- (1970s) to

giga- (1988) to tera- (1998) to peta- (2008) with same
programming model and same algorithms
  exa- is qualitatively different and will be much harder

n  Core numerical analysis and scientific computing will
ultimately confront exascale to maintain sponsor relevance
  though obviously, there remain many mathematically fruitful

directions are architecture-neutral

NIA, 6 Aug 2012

NASA CFD relevance
n Exascale’s extremes change the game

  mathematicians are on the front line
  without contributions in the form of new mathematics (including

statistics), the passage to the exascale will yield little fruit

  mathematical scientists will find the computational power
to do things many have wanted
  room for creativity in “post-forward” problems (inverse

problems and data assimilation)
  mathematical scientists will participate in cross-disciplinary

integration – “third paradigm” and “fourth paradigm”
  remember that exascale at the lab means petascale on the desk

n Let’s mention some mathematical opportunities,
after quickly reviewing the hardware challenges

NIA, 6 Aug 2012

Why exa- is different

(Intel Sandy Bridge, 2.27B transistors)

c/o T. Schulthess (ETHZ); c/o P. Kogge (ND) et al.

Going across the die requires up to an order of magnitude more!
DARPA study predicts that by 2019:
u  Double precision FMADD flop: 11pJ
u  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall)

Which steps of FMADD take more energy?

input
input

input

output

four

NIA, 6 Aug 2012

Why exa- is different, cont.

Moore’s Law (1965) does not end but
Dennard’s MOSFET scaling (1972) does

Eventually processing will be
limited by transmission

Robert Dennard, IBM
(inventor of DRAM, 1966)

NIA, 6 Aug 2012

What will first “general purpose” exaflop/s
machines look like?

n  Hardware: many potentially exciting paths beyond today’s
CMOS silicon-etched logic, but not commercially at scale
within the decade

n  Software: many ideas for general-purpose and domain-
specific programming models beyond “MPI + X”, but not
penetrating the main CS&E workforce within the decade

NIA, 6 Aug 2012

Prototype exascale hardware:
a heterogeneous, distributed memory
GigaHz KiloCore MegaNode system

c/o P. Beckman (ANL)

~3

NIA, 6 Aug 2012

Some exascale themes

  Clock rates cease to increase while arithmetic capacity
continues to increase dramatically w/concurrency
consistent with Moore’s Law

  Storage capacity diverges exponentially below
arithmetic capacity

  Transmission capacity diverges exponentially below
arithmetic capacity

  Mean time between hardware interrupts shortens
  Billions of dollars of scientific software hang in the

balance until better algorithms arrive to span the
architectural gap

NIA, 6 Aug 2012

Hurdle #1: power requires slower clocks
and greater concurrency

c/o SciDAC Review 16, February 2010

NIA, 6 Aug 2012

Hurdle #2: memory bandwidth could eat

up the entire power budget

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 0.2 0.5 1 2

M
em

or
y

Po
w

er
 C

on
su

m
pt

io
n

in
 M

eg
aw

at
ts

 (M
W

)

Bytes/FLOP ratio (# bytes per peak FLOP)

Stacked JEDEC 30pj/bit 2018 ($20M)

Advanced 7pj/bit Memory ($100M)

Enhanced 4pj/bit Advanced Memory ($150M
cumulative)

Feasible Power Envelope (20MW)

c/o John Shalf (LBNL)

NIA, 6 Aug 2012

Hurdle #3: memory capacity could eat
up the entire fiscal budget

$0.00

$100.00

$200.00

$300.00

$400.00

$500.00

$600.00

16 32 64 128 256

C
os

t i
n

M
ill

io
ns

 o
f D

ol
la

rs

Petabytes of Memory

Cost in $M (8 gigabit modules)

Cost in $M (16 Gigabit modules)

1/2 of $200M system

c/o John Shalf (LBNL)

NIA, 6 Aug 2012

Implications of operating on the edge
n  Draconian reduction required in power per flop and per

byte will make computing and copying data less reliable
  voltage difference between “0” and “1” will be reduced
  circuit elements will be smaller and subject to greater

physical noise per signal
  there will be more errors that must be caught and corrected

n  Power will have to be cycled off and on or clocks slowed
and speeded based on compute schedules and based on
cooling capacity
  makes per node performance rate unreliable

NIA, 6 Aug 2012

Implications of operating on the edge
n  Expanding the number of nodes (processor-memory units)

beyond 106 would not a serious threat to algorithms that lend
themselves to well-amortized precise load balancing
  provided that the nodes are performance reliable

n  A real challenge is expanding the number of cores on a node
to 103

  must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less (basically “strong” scaling)

n  It is already about 103 slower to to retrieve an operand from
main DRAM memory than to perform an arithmetic
operation – will get worse by a factor of ten
  almost all operands must come from registers or upper cache

NIA, 6 Aug 2012

“Missing” mathematics
n New formulations with

  greater arithmetic intensity (flops per bytes moved
into and out of registers and upper cache)

  reduced communication
  reduced synchronization
  assured accuracy with (adaptively) less floating-

point precision
n Quantification of trades between limiting resources
n Plus all of the exciting analytical agendas that

exascale is meant to exploit

NIA, 6 Aug 2012

Arithmetic intensity illustration

Roofline model of
numerical kernels on
an NVIDIA C2050
GPU (Fermi). The
‘SFU’ label is used
to indicate the use of
special function
units and ‘FMA’
indicates the use of
fused multiply-add
instructions.

(The order of fast
multipole method
expansions was set
to p = 15.)

c/o L. Barba (BU); cf. “Roofline Model” of S. Williams (Berkeley)

NIA, 6 Aug 2012

n  Amortize communication over many computational steps
  s-step Krylov methods: power kernels with wide halos
  “tall skinny QR”: recursively double the row-scope of independent

QRs
  Block Krylov methods: solve b several independent systems at once

with improved convergence (based on λmax/λb rather than λmax/λmin)

n  Enable less synchrony between inner loop steps
  new synchronization-reducing sparse matrix-vector multiply on

IBM’s SPI environment in BG/Q
  perform local multiplies while pushing data to neighbors and finish

up as off-processor data becomes available

Classical ideas in communication reduction
and synchronization reduction for Ax=b

NIA, 6 Aug 2012

Miracles “need not apply”

n We should not expect to escape causal dependencies
  if the input-to-output map of a problem description has

all-to-all data dependencies, like an elliptic PDE Green’s
function, and if we need the solution accurately
everywhere, we will have all-to-all communication

n But we should ask fundamental questions:
  for the science of interest, do we need to evaluate the

output everywhere?
  is there another formulation that can produce the same

required scientific observables in less time and energy?

NIA, 6 Aug 2012

How are most workhorse simulations
implemented at the infra-petascale today?

n  Iterative methods based on data decomposition and
message-passing
  each individual processor works on a portion of the original

problem and exchanges information at its boundaries with
other processors that own portions with which it interacts
causally, to evolve in time or to establish equilibrium

  computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

n The programming model is SPMD/BSP/CSP
  Single Program, Multiple Data
  Bulk Synchronous Programming
  Communicating Sequential Processes

NIA, 6 Aug 2012

Estimating scalability
 n  Given complexity estimates of the leading terms of:

  the concurrent computation (per iteration phase)
  the concurrent communication
  the synchronization frequency

n  And a model of the architecture including:
  internode communication (network topology and protocol reflecting

horizontal memory structure)
  on-node computation (effective performance parameters including

vertical memory structure)

n  One can estimate optimal concurrency and optimal
execution time
  on per-iteration basis
  simply differentiate time estimate in terms of problem size N and

processor number P with respect to P

NIA, 6 Aug 2012

3D stencil computation weak scaling
(assume fast local network, tree-based global reductions)

n  Total wall-clock time per iteration (ignoring local comm.)

n  For optimal P, , or

 or

n  P can grow linearly with N, and running time increases

“only” logarithmically – as good as weak scaling can be!
n  Problems: (1) assumes perfect synchronization,
 (2) log of a billion may be “large”

T (N,P) = A N
P
+C logP

!T
!P

= 0 !A N
P2

+
C
P
= 0

Popt =
A
C
N

NIA, 6 Aug 2012

SPMD parallelism w/ domain decomposition:
an endangered species?

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23 A21 A22
rows assigned

to proc “2”

NIA, 6 Aug 2012

Workhorse innards: e.g., Krylov-Schwarz,
a bulk synchronous implicit solver

local
scatter

Jac-vec
multiply

precond
sweep

daxpy inner
product

Krylov
iteration

…

Idle time due to load imbalance becomes a
challenge at, say, one billion cores, when
one processor can hold up all of the rest at
a synchronization point

P1:

P2:

Pn:


communication imbalance computation imbalance

NIA, 6 Aug 2012

Our programming idiom is nested loops, e.g.,
Newton-Krylov-Schwarz

 for (k = 0; k < n_Newton; k++) {
 compute nonlinear residual and Jacobian

 for (j = 0; j < n_Krylov; j++) {
 forall (i = 0; i < n_Precon ; i++) {

 solve subdomain problems concurrently
 } // End of loop over subdomains
 perform Jacobian-vector product
 enforce Krylov basis conditions
 update optimal coefficients
 check linear convergence
 } // End of linear solver
 perform DAXPY update
 check nonlinear convergence
 } // End of nonlinear loop

Newton
loop

Krylov
loop

concurrent
preconditioner

loop

Outer loops (not shown): continuation, implicit timestepping, optimization

NIA, 6 Aug 2012

Dataflow Illustration: Generalized Eigensolver

c/o H. Ltaief (KAUST)

NIA, 6 Aug 2012

These loops, with their artifactual orderings,
need to be replaced with DAGs

  Diagram shows a
dataflow ordering of the
steps of a 4×4
symmetric generalized
eigensolver

  Nodes are tasks, color-
coded by type, and
edges are data
dependencies

  Time is vertically
downward

c/o H. Ltaief (KAUST)

NIA, 6 Aug 2012

Multiphysics w/ legacy codes:
an endangered species?

n  Many multiphysics codes operate like this, where the models may
occupy the same domain in the bulk (e.g., reactive transport) or
communicate at interfaces (e.g., ocean-atmosphere)*

n  The data transfer cost represented by the blue and green arrows
may be much higher than the computation cost of the models,
even apart from first-order operator splitting error and possible
instability

Model 1

Model 2
(subcycled)

*see Keyes, et al., 2011 paper from DOE ICiS workshop for IJHPCA

NIA, 6 Aug 2012

Many codes have the algebraic and software
structure of multiphysics

  Exascale is motivated by these:
  uncertainty quantification, inverse problems,

optimization, immersive visualization and steering

  These may carry auxiliary data structures to/from
which blackbox model data is passed and they act
like just another “physics” to the hardware
  pdfs, Lagrange multipliers, etc.

  Today’s separately designed blackbox algorithms
for these may not live well on exascale hardware: co-
design may be required due to data motion

NIA, 6 Aug 2012

Multiphysics layouts must invade blackboxes

ocean
atm

ice

c/o W. D. Gropp (UIUC)

n  Each application must
first be ported to
extreme scale
(distributed, hierarchical
memory)

n  Then applications may
need to be interlaced at
the data structure level
to minimize copying and
allow work stealing at
synchronization points

NIA, 6 Aug 2012

Bad news/good news (1)
  One may have to control data motion

  carries the highest energy cost in the exascale
computational environment

  One finally will get the privilege of
controlling the vertical data motion
  horizontal data motion under control of users under Pax

MPI, already
  but vertical replication into caches and registers was

(until now with GPUs) scheduled and laid out by
hardware and runtime systems, mostly invisibly to users

NIA, 6 Aug 2012

Bad news/good news (2)
  “Optimal” formulations and algorithms may lead

to poorly proportioned computations for exascale
hardware resource balances
  today’s “optimal” methods presume flops are expensive and

memory and memory bandwidth are cheap

  Architecture may lure users into more
arithmetically intensive formulations (e.g., fast
multipole, lattice Boltzmann, rather than mainly
PDEs)
  tomorrow’s optimal methods will (by definition) evolve to

conserve what is expensive

NIA, 6 Aug 2012

Bad news/good news (3)
  Hardware nonuniformity may force

abandonment of the Bulk Synchronous
Programming (BSP) paradigm
  it will be impossible for the user to control load

balance sufficiently to make it work

  Hardware and algorithmic nonuniformity will
be indistinguishable at the performance level
  good solutions for the dynamically load balancing in

systems space will apply to user space, freeing users

NIA, 6 Aug 2012

Bad news/good news (4)
  Default use of high precision may come to an end,

as wasteful of storage and bandwidth
  we will have to compute and communicate “deltas” between

states rather than the full state quantities, as we did when double
precision was expensive (e.g., iterative correction in linear
algebra)

  a combining network node will have to remember not just the last
address, but also the last values, and send just the deltas

  Equidistributing errors properly while
minimizing resource use will lead to innovative
error analyses in numerical analysis

NIA, 6 Aug 2012

Bad news/good news (5)
  Fully deterministic algorithms may simply come

to be regarded as too synchronization-vulnerable
  Rather than wait for data, we may infer it, taking into account

sensitivity to poor guesses, and move on

  A rich numerical analysis of algorithms that
make use of statistically inferred “missing”
quantities may emerge

NIA, 6 Aug 2012

How will PDE computations adapt?
n  Programming model will still be message-passing (due to

large legacy code base), adapted to multicore or hybrid
processors beneath a relaxed synchronization MPI-like
interface

n  Load-balanced blocks, scheduled today with nested loop
structures will be separated into critical and non-critical
parts

n  Critical parts will be scheduled with directed acyclic
graphs (DAGs)

n  Noncritical parts will be made available for work-stealing
in economically sized chunks

NIA, 6 Aug 2012

Adaptation to
asynchronous programming styles

n  To take full advantage of such asynchronous algorithms, we
need to develop greater expressiveness in scientific
programming
  create separate threads for logically separate tasks, whose priority is

a function of algorithmic state, not unlike the way a time-sharing OS
works

  join priority threads in a directed acyclic graph (DAG), a task graph
showing the flow of input dependencies; fill idleness with noncritical
work or steal work

n  Steps in this direction
  Asynchronous Dynamic Load Balancing (ADLB) [Lusk (Argonne),

2009]
  Asynchronous Execution System [Steinmacher-Burrow (IBM), 2008]

NIA, 6 Aug 2012

n  Can write code in styles that do not require artifactual
synchronization

n  Critical path of a nonlinear implicit PDE solve is essentially
… lin_solve, bound_step, update; lin_solve, bound_step, update …

n  However, we often insert into this path things that could be done
less synchronously, because we have limited language
expressiveness
  Jacobian and preconditioner refresh
  convergence testing
  algorithmic parameter adaptation
  I/O, compression
  visualization, data mining

Evolution of Newton-Krylov-Schwarz:
breaking the synchrony stronghold

NIA, 6 Aug 2012

Sources of nonuniformity
n  System

  manufacturing, OS jitter, TLB/cache performance variations,
network contention, dynamic power management, soft errors, hard
component failures, software-mediated resiliency, etc.

n  Algorithmic
  physics at gridcell/particle scale (e.g., table lookup, equation of

state, external forcing), discretization adaptivity, solver adaptivity,
precision adaptivity, etc.

n  Effects are similar when it comes to waiting at
synchronization points

n  Possible solutions for system nonuniformity will improve
programmability, too

NIA, 6 Aug 2012

Programming practice
n  Prior to possessing exascale hardware, users can prepare

themselves by exploring new programming models
  on manycore and heterogeneous nodes

n  Attention to locality and reuse is valuable at all scales
  will produce performance paybacks today and in the future
  domains of coherence will be variable and hierarchical

n  New algorithms and data structures can be explored
under the assumption that flop/s are cheap and moving
data is expensive

n  Independent tasks that have complementary resource
requirements can be interleaved in time in independently
allocated spaces

NIA, 6 Aug 2012

Path for scaling up applications
n  Weak scale applications up to distributed memory limits

  proportional to number of nodes
n  Strong scale applications beyond this

  proportional to cores per node/memory unit
n  Scale the workflow, itself

  proportional to the number of instances (ensembles)
  integrated end-to-end simulation

n  Co-design process is staged, with any of these types of
scaling valuable by themselves

n  Big question: does the software for co-design factor? Or is
all the inefficiency at the data copies at interfaces between
the components after a while?

NIA, 6 Aug 2012

Required software enabling technologies
 Model-related

  Geometric modelers
  Meshers
  Discretizers
  Partitioners
  Solvers / integrators
  Adaptivity systems
  Random no. generators
  Subgridscale physics
  Uncertainty

quantification
  Dynamic load balancing
  Graphs and

combinatorial algs.
  Compression

 Development-related
u  Configuration systems
u  Source-to-source

translators
u  Compilers
u  Simulators
u  Messaging systems
u  Debuggers
u  Profilers

 Production-related
u  Dynamic resource

management
u  Dynamic performance

optimization
u  Authenticators
u  I/O systems
u  Visualization systems
u  Workflow controllers
u  Frameworks
u  Data miners
u  Fault monitoring,

reporting, and recovery

High-end computers come
with little of this stuff.

Most has to be contributed
by the user community

NIA, 6 Aug 2012

	
 	
 	
 CS	

Math	

Applica,ons	

Enabling	

technologies	

respond	
 to	
 all	

Many	

applica,ons	

drive	

U. Schwingenschloegl

A. Fratalocchi G. Schuster F. Bisetti R. Samtaney

G. Stenchikov

I. Hoteit V. Bajic M. Mai

NIA, 6 Aug 2012

Kennedy’s Challenge, 1962

 “We choose to do [these] things,
not because they are easy, but
because they are hard, because
that goal will serve to organize and
measure the best of our energies
and skills, because that challenge is
one that we are willing to accept,
one we are unwilling to postpone,
and one which we intend to win...”

NIA, 6 Aug 2012

Acknowledgment:
 today’s Peta-op/s machines

1012 neurons @ 1 KHz = 1 PetaOp/s
1.4 kilograms, 20 Watts

See 2011 special issue of Comptes Rendus

Exaflop/s: The why and the
how, D. E. Keyes, Comptes
Rendus de l’Academie des
Sciences 339, 2011, 70—77.

