Petascale Computing and Similarity Scaling in Turbulence

P. K. Yeung Schools of AE, CSE, ME Georgia Tech pk.yeung@ae.gatech.edu

NIA CFD Futures Conference Hampton, VA; August 2012

Supported by: NSF and NSF/DOE Supercomputer Centers, USA

Petascale and Beyond: Some Remarks

- The "supercomputer arms race":
 - Earth Simulator (Japan) was No. 1 in 2002 at 40 Teraflops.
 In 2011: the same speed did not make it into top 500.
- Massive parallelism has been dominant trend
 - but, because of communication and memory cache issues, most actual user codes at only a few percent of theoretical peak
 - multi-cored processors for on-node shared memory
- Path to Exascale may require new modes of programming
- Tremendous demand for resources: both CPU hours and storage
- Advanced Cyberinfrastructure having a transformative impact on research in turbulence and other fields of science and engineering

Direct Numerical Simulations (DNS)

- For science discovery: instantaneous flow fields (at all scales) via equations expressing fundamental conservation laws
- Navier-Stokes equations with constant density $(\nabla \cdot \mathbf{u} = 0)$:

$$\partial \mathbf{u}/\partial t + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla(p/\rho) + \nu \nabla^2 \mathbf{u} + \mathbf{f}$$

- Fourier pseudo-spectral methods (for accuracy and efficiency)
 - in our work: homogeneous turbulence (no boundaries)
 - local isotropy: results relevant to high-Re turbulent flows
- $\blacksquare \ Wide range of scales \implies computationally intensive$
- Tremendous detail, surpassing most laboratory experiments
 - fundamental understanding, "thought experiments"
 - help advance modeling (both input and output)

NSF: Petascale Turbulence Benchmark

(One of a few for acceptance testing of 11-PF Blue Waters)

"A 12288^3 simulation of fully developed homogeneous turbulence in a periodic domain for 1 eddy turnover time at a value of R_λ of O(2000)."

"The model problem should be solved using a dealiased, pseudospectral algorithm, a fourth-order explicit Runge-Kutta time-stepping scheme, 64-bit floating point (or similar) arithmetic, and a time-step of 0.0001 eddy turnaround times."

"Full resolution snapshots of the three-dimensional vorticity, velocity and pressure fields should be saved to disk every 0.02 eddy turnaround times. The target wall-clock time is 40 hours."

(PRAC grant from NSF, working with BW Project Team)

2D Domain Decomposition

Partition a cube along two directions, into "pencils" of data

- Up to N^2 cores for N^3 grid
- MPI: 2-D processor grid, $M_1(\text{rows}) \times M_2(\text{cols})$

3D FFT from physical space to wavenumber space: (Starting with pencils in *x*)

- **J** Transform in x
- **)** Transform in z
- \checkmark Transpose to pencils in y
- **)** Transform in y

Transposes by message-passing, collective communication

Factors Affecting Performance

Much more than the number of operations...

- Domain decomposition: the "processor grid geometry"
- Load balancing: are all CPU cores equally busy?
- Software libraries, compiler optimizations
- Computation: cache size and memory bandwidth, per core
- Communication: bandwidth and latency, per MPI task
- Memory copies due to non-contiguous messages
- I/O: filesystem speed and capacity; control of traffic jams
- Environmental variables, network topology

Practice: job turnaround, scheduler policies, and CPU-hour economics

Current Petascale Implementations

- Pure MPI: performance dominated by collective communication
 - usually 85-90% strong scaling every doubling of core count
- Hybrid MPI + OpenMP (multithreaded)
 - shared memory on node, distributed across nodes
 - less communication overhead, *may* scale better than pure MPI at large problem size and large core count
 - memory affinity issues (system-dependent)
- Co-Array Fortran (Partitioned Global Address Space language)
 - remote-memory addressing in place of MPI communication
 - key routines by Cray expert (R.A. Fiedler) on Blue Waters project, significantly faster on Cray XK6 (using 131072 cores)

DNS Code: Parallel Performance

- Largest tests on 2+ Petaflop Cray XK6 (Jaguarpf at ORNL)
- 4096^3 (circles) and 8192^3 (triangles), 4th-order RK

- pure MPI, best processor grid, stride-1 arithmetic
- **J** dealiasing: can skip some (high k) modes in Fourier space
- better scaling when scalars added (blue, more work/core)

Future Optimization Strategies

- Advanced MPI: one-sided communication
 - let sending task write directly onto memory in receiving task
- Overlap between computation and communication
 - not a new idea, but tricky to do, and little hardware support
 - not too effective if there is not much to overlap
- Serialized-threads:
 - let some OpenMP threads communicate, while others compute
- GPUs and accelerators:
 - speed up computation and capable of v. large thread counts
 - but need to copy data between GPU and CPU
- Or, shall we change the numerical method?
 (Consider the degree of need for communication)

Turbulence: Uses of High-End HPC

- A wider range of scales (in space and/or time)
 - higher Reynolds number (always!)
 - mixing high Schmidt number ($Sc = \nu/D$): smaller scales
 - very low Sc: small time steps (fast molecular diffusion)
- Improved accuracy at the small scales
 - fine-scale intermittency, thin reaction zones
- Longer simulations for better sampling or temporal evolution
 - amount of data is also a challenge
- More complex physics, coupled with other phenomena
 - e.g. stratification, rotation, MHD
- More complex boundary conditions
 - channel, boundary layer, mixing layer etc (still canonical)

Extreme Events and Intermittency

- **Dissipation:** $\epsilon = 2\nu s_{ij}s_{ij}$ (strain rates squared)
- **•** Enstrophy: $\Omega = (\nu)\omega_i\omega_i$ (rotation rates squared)
- Same mean values in homogeneous turbulence, but moments and PDFs can be different
- Both represent small scales, but most data sources suggest enstrophy is more intermittent, contrary to expectation at high Reynolds no. (Nelkin 1999)
- Strong dissipation/straining can pull flame surfaces apart, while strong rotation leads to preferential particle concentration in multiphase flows
- Difficulties in resolution and sampling,
 inherent nature of infrequent but extreme events

3D Visualization

[TACC visualization staff] 2048³, $R_{\lambda} \approx 650$: intense enstrophy (red) has worm-like structure, while dissipation (blue) is more diffuse

PDFs of Dissipation and Enstrophy

From Yeung et al. J. Fluid Mech. 2012 (Vol. 700; Focus on Fluids)

Image: Highest Re, and best-resolved at moderate Re (both 4096³)

High Re: most intense events in both found to scale similarly

Higher-order moments also become closer

JPDF of Dissipation and Enstrophy

Do intense ϵ and intense Ω tend to occur together?

(contours in first quadrant, logarithmic intervals)

Database and Data Management

 \checkmark Three 4096³ simulations have been performed, aimed at:

- Lagrangian statistics at highest *Re* feasible
- Improved resolution of smallest scales
- Higher Schmidt number for turbulent mixing

(A fourth is planned, for mixing at very low Schmidt number)

- Several hundred Terabytes of data, mostly restart files that can be analyzed to answer various physical questions
 - how best to keep/organize data, at national centers
 - how best to share data with other researchers (and/or work with them to extract statistics they need)
- Cyber challenges: e.g. data management are non-trivial

Concluding Remarks

Successful extreme-scale DNS will require:

- Deep engagement with top HPC experts and vendors' staff
- Communication, memory, and data; rather than raw speed
- Insights about the science: what will be most useful to compute, that cannot be obtained otherwise?
- Competition for hours, in high demand by other disciplines

Q.: Will we be ready for Exascale in 2018?