Turbulence in the Environment

Sutanu Sarkar
University of California San Diego

Funding provided by: ONR and NSF
Examples

- Submersible wakes in a stratified environment
- Internal gravity waves and turbulent mixing near sloping topography in the ocean
Problem 1
Spatially evolving stratified wake
with Matt de Stadler
How are wakes simulated?

Stationary frame

- Limited to small domain
- Very expensive
- No ad-hoc ICs
- State of the art

\[Re = 1,000 \quad Fr = 0.6 \quad (DNS) \]

- Gushchin & Matyushin *ECCOMAS CFD* 2006

\[Re = 10,000 \quad Fr = 25 \quad (LES) \]

- Pasquetti *CF* 2011

Unstratified sphere: \[Re = 3,700 \quad (DNS) \]

Unstratified golf-ball: \[Re = 1.1 \times 10^5 \quad (DNS) \]

Temporally evolving frame

- Can run to the far wake
- Relatively cheap
- High uncertainty in ICs
- State of the art

\[Re = 50,000, \quad Fr = 4 \quad (DNS) \]

- 2 \times 10^9 pts Brucker & Sarkar, *JFM*, 2010

\[Re = 100,000 \quad Fr = 32 \quad (LES) \]

- Diamessis et al, *JFM* 2011

Rodriguez et al. *JFM* 2010

Smith et. al. *IJHFF* 2010
Numerical method details

3D unsteady, incompressible Navier-Stokes equations with Boussinesq approximation

Immersed boundary method to represent sphere in domain

Collocated grid arrangement using pressure-correction algorithm

Semi-implicit mixed RK3-ADI method for time advancement

Low storage RK3 for nonlinear terms and Boussinesq term

ADI for viscous and pressure gradient terms

2nd order centered differences for spatial terms

Parallel semi-coarsening multigrid pressure solver

3-D domain decomposition using MPICH II

Sponge region at physical boundaries
What does an unstratified wake look like?

Vorticity magnitude contours for Re=1,000
Blue: low vorticity magnitude
Red: high vorticity magnitude

About 10 million grid points
Thin laminar boundary layer forms on the body
Unsteady vortex shedding at low frequency leads to large scale spiral structure
BL separates and forms thin shear layer
Shear layer becomes unstable due to KH instability
Growth of instability leads to turbulence and breakdown of spiral structure
Wake instabilities and frequencies

Two dominant frequency emerge:

- Spiral mode related to large scale 'flapping' of the wake
- Kelvin-Helmholtz mode from the separated BL shear layer

![Diagram with vorticity magnitude and probe locations](image)

![Vertical velocity traces at probe 2](image)
Our results are similar to those of Tomboulides & Orszag, JFM 2000 and Wu & Faeth, AIAA 1993

Rapid decay of defect velocity after the separation bubble

Fluctuating region broader than the mean region

Turbulence intensities peak in the near wake
Features of turbulent wakes in stratified fluids

Stratification breaks radial symmetry: vertical motion inhibited

Transfer between kinetic and potential energy

Internal waves radiated

Late time quasi-2D flow

Very different than unstratified wake
Motivating questions for spatially evolving flow past a sphere

1. How are the mean and fluctuating fields correlated in the near wake? Collapsed region?

2. How do internal waves alter the velocity, density and vorticity structure?

3. How is energy re-distributed during the collapse?

4. Is the near wake as insensitive to Fr as often assumed?

5. How is a temporally evolving wake simulation initialized with realistic initial conditions different from one based on idealized conditions?
Flow evolution: Defect velocity and wake dimensions

Stratification preserves the defect velocity

Stratification reduces vertical extent of the wake

The wake experiences a collapse around $x/D = 12$, $Nt=3$

Kinetic energy in the wake can no longer support the displaced potential energy (heavy fluid lifted up, light fluid pushed down)
Wake energetics (from temporal DNS)

- The integrated m.k.e decreases primarily due to transfer to turbulence
 \[
 \frac{D(m.k.e.)}{Dt} = -P - \bar{\epsilon} - \frac{\partial T_i}{\partial x_i} \approx P \text{ for } t < 100
 \]

- Buoyancy effects reduces P and therefore the m.k.e. is long lived (compare solid to dashed lines).

- The shape of the SP mean profile increases the mean shear, increases P, and therefore the decay rate relative to T profile

S. Sarar
Streamwise velocity (spatial evolution)

Initial symmetric profile is quickly lost
By $x/D=16$ the wake has spread more in the horizontal than vertical
Fluctuations extend further than the mean
Visualizing internal waves with density perturbation

Contour plots:
- Blue: -2×10^{-4}
- Red: 2×10^{-4}

Wake region isocontours at
- Blue: 5×10^{-4}
- Red: 5×10^{-4}

$x/D=1, Nt=0.25$
$x/D=8, Nt=2$
$x/D=16, Nt=4$
$x/D=24, Nt=6$

Heavy fluid lifted up
Light fluid pushed down

Internal waves are radiated by the wake to the background
Carry energy and momentum to surroundings
Problem 2
Internal waves and boundary turbulence
with Bishakh Gayen
Ocean mixing

- About 2 TW of energy required to maintain the overturning circulation that prevents a stagnant and uniformly cold, salty ocean.
- Internal waves forced by surface tides and wind in equal parts supply this energy, Munk and Wunsch (1998).
- Mixing and transport of mixed fluid into the interior occurs at localized and intermittent spots.
- Where and how do internal waves break down to turbulence and what are the energetic balances?
Internal tides and dissipation hotpots

Nash et al, GRL (2007)

300 m vertical displacement of fluid in a M2 tidal cycle
The oscillatory tide over topographic roughness leads to the formation of internal gravity waves i.e. internal tides.

The internal tides can have significantly higher velocities and amplitudes than the surface tide.

Critical case, slope angle = angle of wave propagation, is resonant.
Numerical Method

- Three-dimensional, unsteady NS equations are solved in generalized coordinates on a boundary-conforming grid.
- Third-order Runge-Kutta method for time stepping
- ADI for viscous terms
- Spanwise derivatives: pseudo-spectral. Others 2nd order finite differences.
- A multigrid algorithm for pressure solver.
- DNS & LES modes
- Spanwise periodic BC. Bottom boundary: no slip, adiabatic. Top and lateral boundaries: sponge region
Near-critical slope: Evolution of Kinetic energy

DNS at slope length of 1.7 m, $Re_s = 177$. Details in Gayen & Sarkar, Phys. Rev. Letters (2010).
Baroclinic boundary flow strength and width (LES)

Maximum upslope flow
phase=0

Maximum downslope flow
phase=180

Maximum upslope flow
(Selfsimilar structure)

• Beam peak velocity and width increase with increasing slope length, 1 m to 25 m.
• Asymmetry. Beam width decreases during down slope flow for same slope length.
• Selfsimilar structure when scaled with peak velocity and beam width.
• Model give the beam width and beam velocity approximately proportional to $l^{0.5}$.

Gayen and Sarkar, JFM (2011)
LES of a patch of an oceanic IW beam

Energy

C_g

C_p & K

NS equations in rotated coordinates
Streamwise periodic
60 m beam width
Initialized with self-similar velocity found in previous LES

Gayen & Sarkar, GRL (2011)
Phase dependent TKE in beam

Temperature at $z^* = 20\text{ m}$

Temperature at $z^* = 60\text{ m}$

Streamwise velocity

Intervals of convective instability

Events of detached TKE

Flow reversal mixing

Attached boundary layer TKE, shear instability
Near-bottom dissipation rate in beam
Observations of bottom mixing at Kaena Ridge

Aucan et al, JPO (2006) reported observations from a mooring (DS) on south flank of Kaena Ridge. 200m bottom layer of turbulence is observed with strong overturns during *flow reversal* from down to up flow. A M2 beam is locally generated in the vicinity.
Conclusions

- Turbulence resolving simulations along with theory can be used to understand & model (parameterize) complex, unsteady flows in the natural environment.
- In the ICASE spirit!