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Example:

Try to rescue people in a boat in the middle of the ocean from
approximate knowledge of their initial position and from uncer-
tain observations of a later position.

Equations of motion : dx = f(x,w)dt 4+ gdW, or, in a discrete
approximation, x,41 = xn + 0F (zn) + GdW,

Observations: b = b(nd) = g(z™) +V, V random.

=
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Special case: equations linear, pdf Gaussian, = Kalman filter.

Extensions: extended Kalman filter, ensemble Kalman filter, try
to fit a non-Gaussian situation into a Gaussian framework.
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Simple particle filter:

Follow a bunch of "particles” (samples, replicas) whose empir-
ical density at time t = nd approximates a pdf P, of a set of
systems moved by the equations of motion constrained by the
observations.

Given Pp:

First evolve the particles by the equations of motion alone: (gen-
erates a “prior” density).

Take the observations into account by weighting the particles.
(generates a “posterior” density).
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To avoid following irrelevant particles, resample, so that you have

again a bunch of particles with equal weights. (for 6, ~ [0, 1],
pick z" 1 = z"*+1 such that

AT W, < 0, < AT Wy, where A=Y W

Final (important) step: go back, smooth the past, and resample.
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Bayes theorem:

n+1.,.n n+1,.n+1
Pzt g, prtl) = P g(bzzi(lﬁbn) o
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Fails, in particular when there are many variables: (example from
Bickel at al.):

Model: x ~ N(0,1) Observation: b=x + N(0,1)

dim(x) = 100, 1000 particles, 1000 runs for max weight distri-
butions
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Partial remedy: better choice of prior in linear problems (special
case of what we offer).

Our remedy: sampling by interpolation and iteration, special case
of chainless sampling.
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Simple example of sampling by interpolation and iteration: Non-
linear Brownian bridge.

dr = f(x,t)dt + /Bdw, z(0) =0, =(1) = X.

-/ .\°/°\.
J— _— \ <

0 1

Discretize: z"t1 = 24 f(a™, )5+ (2" T1—z") f/ (2™, tV)s+ W1,
where f/(a", t") = 2L (a7, ")
N—-1

The joint probability density of the variables a:l, e, T IS



Z—lexp(— Zév_l Vn), where Z is the normalization constant and

(= sy @ tt —am) — 5f)°
e 236
(:L'”‘I'l —z"—0f/(1 —5f’))2
26, ’
where f, f/ are functions of the z™, t", and B, = 5§/(1 — §f")2.
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Let ap = f(2™,t™)5/(1 — 5f/ (2™, t™)).

Special case f(z,t) = f(t), f/ = 0. Each 2" T1—2" = N(an, 3/N),
with the an, = f(t")§ known. N = 2k,

Consider zV/2. zN/2 = Zjlv/z(:p” — z" 1) ~ N(A1,V7), where
N/2
Ay =5V2 0,11 = 8)2.

On the other hand, X = zV/2 + Z%/2+1(mn — 2z 1) so that
:UN/Q ~ N(AQ, VQ), with

N-1
AQZX—Zan, V2:V1.
N/2



The pdf of zV/2 is the product of the two pdfs:
— Aq)? — A5)?
exp (_ (z — A1) )exp (_ (z — Ap) )

2V, 25
=\ 2

= exp (—(x ) ) exp(—a),
2V

- _ WV - _ VoA14+V1A5 _ (Ar—A1)%. o
where v = pArg-, @ = 27152 and ¢ = SRy e ? is the
probability of getting from the origin to X, up to a normalization

constant.
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Pick a sample & ~ N(0, 1); obtain a sample of z/V/2 by zN/2 =

a—+ V1.

Given zV/2 sample zV/4 3N/4 then zN/8, #3N/8 etc. Define

£ = (€1,&,...,6n_1); for each ¢ find a sample x = (z1,..., 2V~ 1)
such that
24 ... 2
exd (_51 + ‘|‘5N1) exp (_ (X = %n an)2>
2 203
. (z1 — 20 — a0)2 (22 — 21 — aq)?
— &P <_ 23/N B 23/N
@V =N —ay)?
SN 7

2

. 2
the factor exp (—(X 2 @) ) on the left is the probability of the
fixed end value X up to a normalization constant.



In linear problem, this factor is the same for all the samples and
harmless. The Jacobian J = a(z!, ..., V" 1) /0, ..., eN—1) is a
constant independent of the sample. Each sample is independent
of any previous samples.
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General case: iterate. First pick &€ = (£1,&2,...,&6n_1), Where
each &, l=1,...,N—1, is drawn independently from the N(0, 1)
density (this vector remains fixed during the iteration).

Make a first guess xg = (a3,23,...,x5 1) Evaluate the func-
tions f, f/ at X, sample, repeat. The vectors converge to x =
(z1,...,2¥=1). Both an, s are functions of the final x. The

. 2
factor F|J|, F = exp (—(XQ%:”E”) ) J = Jacobian is a sampling

weight.

Iteration converges if
KL <1,

where K is the Lipshitz constant of f, and L is the length of the
interval (here L = 1).
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Application to filtering:
Start from B, pdf at time nd.
1. Pick & ~ e §¢/2/(27)"/2, (reference variable)

2. Write the (unnormalized) pdf P(b" T 1|zt P(2"T1|z") in the
form exp(—(mn+1—an+1)*H(x”+1)(m"+1—an+1)) exp(—dP(n+1))
( a “pseudo-Gaussian™).

(remembering exp(—(z — a1)?/(2V1)) exp(—(z — an)?/(2V5)) =
exp((z — a)?/(2V) exp(—P),

with

s — VYoayt+Viap oy . ViVo 4 (a1—ap)?
VitV VitV 2(Vi+Va)"
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3. Equate arguments of exponentials.

(example: sample y ~ exp(—(y — a)?/(2v))/v/27mv as a function
of & ~ exp(—§2/2)/\/27r; equating arguments gives y = a + /v§).

Yields £*¢ = (a" T — a4 1)*HE@" T (@" T — a5 41)

Solve by iteration: z; — "+l 9 =0, Define a; = a(z;), H(j) =
H(z;), and factor H(xz;) = LL*, L lower triangular. Then

Tj41 = ay —+ L_lg, CD] — P,

4. Estimate J, the Jacobian.

Each value of g1 appears with probability (up to constant fac-
tors) exp(—¢*£/2)/|J|, and its value is exp(—¢£*£/2) exp(—P), so

the integration weight is exp(—®)|J| (the variability in exp(—£*£/2)
has been discounted in advance).
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Backward sampling:

x1

X8
x9

11
X7 x

Analogous to the Brownian bridge, same steps, H(xy) takes into
account the known positions at time (n + 1)§ to update z™; a
new forward step is needed.



19/26

Special cases: Linear equations and Gaussian densities- a single

particle and a single iteration produce the Kalman variance and
means.

Linear observation function: a single iteration converges.

Diagonal observations: algebra simplifies.
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Example 0: (The Bickel Gaussian) all particles have equal weights.

Example 1: The ship azimuth problem.

xn—l—l — "+ un—|—17
yn—l—l — yn + ,Un—l—l’

u" Tl = N (", B),
vt = N, B),

b = arctan(y™/x") + N (O, s),

Initial data given.
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Make a run, generate synthetic observations, use them to recon-
struct the path.

First question: How accurately can one reconstruct the boat
path from the data?

160 steps and 160 observations. The empirical s.d. of the ob-
servation noise has mean s and s.d .11s.

Many runs made, those inconsistent with the data rejected, the
mean and variance of those that are consistent tabulated. A
smaller error in a single run is accidental.
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Sample boat path and its reconstruction (100 particles and 160
observations)
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Construction (i): with perturbation of the initial positions
Construction (ii): with perturbation of the system variances
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Table I
Intrinsic uncertainty in the azimuth problem

step | x component | y component

40 .0005 21
30 .004 .58
120 .010 .88

160 017 .95
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Table II
The mean of the discriminant D as a function of o5ssumed/ 7.
30 particles
0assumed/o | 3000 runs | 200 runs
5 1.15 &£ .01 | 1.15 £+ .06
.6 1.07 £ .01 | 1.07 £ .06
e 1.07 £ .01 | 1.07 £ .05
.8 1.04 £ .01 | 1.04 £ .05
9 1.02 £ .01 | 1.02 £ .05
1.0 1.01 £ .01 | 1.00 £+ .05
1.1 95 +£ .01 | 1.01 +£ .05
1.2 95 +£ .01 | .95 £+ .04
1.3 94 £ .01 | .96 £ .05
1.4 90 £ .01 | .88 £ .04
1.5 .89 £ .01 | .88 £ .04
2.0 .85 £ .01 | .83 £ .04
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Example 3: The ecological dynamics

dP N P ;
T P_01P—0.6 Z + N (0,

dt 02+ N o1+p’T (0,0p)

a7 P ,

Y2 — 0.18 Z —0.1Z 4+ N(0,

dt 01+ P +N(0,07)

AN P N ,
Y — 01D+ 0.24 7 ~P 0.05Z 4+ N(O,

dt R I A L S v + N0, on)
ab 01D +01P 4018 © Z 4+ 0.05Z + N(0,0%)
— = 0. : : : , O

dt 0.1+ P D

v =0.1443Ay, Ay =09Av_1+ N(0,02)

log POPS = log P, + N (0,021,

Observation: the concentration of plant pigments in the eastern
tropical Pacific from late 1997 to mid 2002 (NASA's SeaWiFS)
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The filter results with 10 particles
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