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Example:

Try to rescue people in a boat in the middle of the ocean from
approximate knowledge of their initial position and from uncer-
tain observations of a later position.

Equations of motion : dx = f(x,ω)dt + gdW , or, in a discrete
approximation, xn+1 = xn + δF(xn) + GdW ,

Observations: bn = b(nδ) = g(xn) + V , V random.
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Special case: equations linear, pdf Gaussian, ⇒ Kalman filter.

Extensions: extended Kalman filter, ensemble Kalman filter, try
to fit a non-Gaussian situation into a Gaussian framework.
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Simple particle filter:

Follow a bunch of ”particles” (samples, replicas) whose empir-
ical density at time t = nδ approximates a pdf Pn of a set of

systems moved by the equations of motion constrained by the
observations.

Given Pn:

First evolve the particles by the equations of motion alone: (gen-

erates a “prior” density).

Take the observations into account by weighting the particles.

(generates a “posterior” density).
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To avoid following irrelevant particles, resample, so that you have
again a bunch of particles with equal weights. (for θk ∼ [0,1],

pick x̂n+1 = xn+1 such that

A−1 ∑i−1
1 Wj < θk < A−1 ∑i

1 Wj, where A =
∑

Wj.

Final (important) step: go back, smooth the past, and resample.
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Bayes theorem:

P(xn+1|xn, bn+1) = P (xn+1|xn)P (bn+1|xn+1)
P (bn+1|bn)
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Fails, in particular when there are many variables: (example from
Bickel at al.):

Model: x ∼ N(0,1) Observation: b = x + N(0,1)

dim(x) = 100, 1000 particles, 1000 runs for max weight distri-
butions
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Partial remedy: better choice of prior in linear problems (special

case of what we offer).

Our remedy: sampling by interpolation and iteration, special case

of chainless sampling.
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Simple example of sampling by interpolation and iteration: Non-

linear Brownian bridge.

dx = f(x, t)dt +
√
βdw, x(0) = 0, x(1) = X.

N/2

0 1
X

Discretize: xn+1 = xn+f(xn, tn)δ+(xn+1−xn)f ′(xn, tn)δ+Wn+1,

where f ′(xn, tn) = ∂f
∂xn(xn, tn)

The joint probability density of the variables x1, . . . , xN−1 is



Z−1 exp(−∑N−1
0 Vn), where Z is the normalization constant and

Vn =

(
(1 − δf ′)(xn+1 − xn) − δf

)2

2βδ

=

(
xn+1 − xn − δf/(1 − δf ′)

)2

2βn
,

where f, f ′ are functions of the xn, tn, and βn = βδ/(1 − δf ′)2.
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Let an = f(xn, tn)δ/(1 − δf ′(xn, tn)).

Special case f(x, t) = f(t), f ′ = 0. Each xn+1−xn = N(an,β/N),

with the an = f(tn)δ known. N = 2k.

Consider xN/2. xN/2 =
∑N/2

1 (xn − xn−1) ∼ N(A1, V1), where

A1 =
∑N/2

1 an, V1 = β/2.

On the other hand, X = xN/2 +
∑N

N/2+1(x
n − xn−1), so that

xN/2 ∼ N(A2, V2), with

A2 = X −
N−1∑

N/2

an, V2 = V1.



The pdf of xN/2 is the product of the two pdfs;

exp

(

−
(x − A1)2

2V1

)

exp

(

−
(x − A2)2

2V2

)

=exp

(

−
(x − ā)2

2v̄

)

exp(−φ),

where v̄ = V1V2
V1+V2

, ā = V2A1+V1A2
V1+V2

, and φ = (A2−A1)2

2(V1+V2)
; e−φ is the

probability of getting from the origin to X, up to a normalization

constant.
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Pick a sample ξ1 ∼ N(0,1); obtain a sample of xN/2 by xN/2 =
ā +

√
v̄ξ1.

Given xN/2, sample xN/4, x3N/4, then xN/8, x3N/8, etc. Define
ξ = (ξ1, ξ2, . . . , ξN−1); for each ξ find a sample x = (x1, . . . , xN−1)
such that

exp



−
ξ21 + · · · + ξ2N−1

2



 exp

(

−
(X − ∑

n an)2

2β

)

=exp

(

−
(x1 − x0 − a0)2

2β/N
−

(x2 − x1 − a1)2

2β/N

− · · ·−
(xN − xN−1 − aN−1)

2

2β/N

)

,

the factor exp
(
−(X−

∑
n an)2

2β

)
on the left is the probability of the

fixed end value X up to a normalization constant.



In linear problem, this factor is the same for all the samples and
harmless. The Jacobian J = ∂(x1, . . . , xN−1)/∂(ξ1, ..., ξN−1) is a

constant independent of the sample. Each sample is independent
of any previous samples.
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General case: iterate. First pick ξ = (ξ1, ξ2, . . . , ξN−1), where

each ξl, l = 1, . . . , N −1, is drawn independently from the N(0,1)
density (this vector remains fixed during the iteration).

Make a first guess x0 = (x1
0, x2

0, . . . , xN−1
0 ) Evaluate the func-

tions f, f ′ at xj, sample, repeat. The vectors converge to x =

(x1, . . . , xN−1). Both an,βn are functions of the final x. The

factor F |J |, F = exp
(
−(X−

∑
n an)2

2
∑

n βn

)
, J = Jacobian is a sampling

weight.

Iteration converges if

KL < 1,

where K is the Lipshitz constant of f , and L is the length of the

interval (here L = 1).
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Application to filtering:

Start from Pn, pdf at time nδ.

1. Pick ξ ∼ e−ξ∗ξ/2/(2π)n/2, (reference variable)

2. Write the (unnormalized) pdf P(bn+1|xn+1)P(xn+1|xn) in the
form exp(−(xn+1−an+1)

∗H(xn+1)(xn+1−an+1)) exp(−Φ(n + 1))
( a “pseudo-Gaussian”).

(remembering exp(−(x − a1)2/(2V1)) exp(−(x − a2)2/(2V2)) =
exp((x − ā)2/(2V̄ ) exp(−Φ),

with

ā = V2a1+V1a2
V1+V2

, V̄ = V1V2
V1+V2

,Φ = (a1−a2)2

2(V1+V2)
.
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3. Equate arguments of exponentials.

(example: sample y ∼ exp(−(y − a)2/(2v))/
√

2πv as a function
of ξ ∼ exp(−ξ2/2)/

√
2π; equating arguments gives y = a +

√
vξ).

Yields ξ∗ξ = (xn+1 − an+1)
∗H(xn+1)(xn+1 − an+1)

Solve by iteration: xj → xn+1, x0 = 0, Define aj = a(xj), H(j) =
H(xj), and factor H(xj) = LL∗, L lower triangular. Then

xj+1 = aj + L−1ξ,Φj → Φ.

4. Estimate J, the Jacobian.

Each value of xn+1 appears with probability (up to constant fac-
tors) exp(−ξ∗ξ/2)/|J |, and its value is exp(−ξ∗ξ/2) exp(−Φ), so
the integration weight is exp(−Φ)|J | (the variability in exp(−ξ∗ξ/2)
has been discounted in advance).
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Backward sampling:

x11

t

x7

x8
x9

x10

Analogous to the Brownian bridge, same steps, H(xn) takes into

account the known positions at time (n + 1)δ to update xn; a
new forward step is needed.
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Special cases: Linear equations and Gaussian densities- a single

particle and a single iteration produce the Kalman variance and
means.

Linear observation function: a single iteration converges.

Diagonal observations: algebra simplifies.
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Example 0: (The Bickel Gaussian) all particles have equal weights.

Example 1: The ship azimuth problem.

xn+1 = xn + un+1,

yn+1 = yn + vn+1,

un+1 = N(un,β),
vn+1 = N(vn,β),

bn = arctan(yn/xn) + N(0, s),

Initial data given.
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Make a run, generate synthetic observations, use them to recon-

struct the path.

First question: How accurately can one reconstruct the boat

path from the data?

160 steps and 160 observations. The empirical s.d. of the ob-

servation noise has mean s and s.d .11s.

Many runs made, those inconsistent with the data rejected, the

mean and variance of those that are consistent tabulated. A
smaller error in a single run is accidental.
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Sample boat path and its reconstruction (100 particles and 160

observations)
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(1) boat path
(2) its construction  
(3) its construction (i)
(4) its construction (ii)
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Construction (i): with perturbation of the initial positions
Construction (ii): with perturbation of the system variances
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Table I

Intrinsic uncertainty in the azimuth problem

step x component y component
40 .0005 .21
80 .004 .58
120 .010 .88
160 .017 .95
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Table II
The mean of the discriminant D as a function of σassumed/σ,

30 particles

σassumed/σ 3000 runs 200 runs
.5 1.15 ± .01 1.15 ± .06
.6 1.07 ± .01 1.07 ± .06
.7 1.07 ± .01 1.07 ± .05
.8 1.04 ± .01 1.04 ± .05
.9 1.02 ± .01 1.02 ± .05
1.0 1.01 ± .01 1.00 ± .05
1.1 .95 ± .01 1.01 ± .05
1.2 .95 ± .01 .95 ± .04
1.3 .94 ± .01 .96 ± .05
1.4 .90 ± .01 .88 ± .04
1.5 .89 ± .01 .88 ± .04
2.0 .85 ± .01 .83 ± .04
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Example 3: The ecological dynamics

dP

dt
=

N

0.2 + N
γP − 0.1P − 0.6

P

0.1 + P
Z + N(0, σ2

P )

dZ

dt
= 0.18

P

0.1 + P
Z − 0.1Z + N(0, σ2

Z)

dN

dt
= 0.1D + 0.24

P

0.1 + P
Z − γP

N

0.2 + N
+ 0.05Z + N(0, σ2

N)

dD

dt
= −0.1D + 0.1P + 0.18

P

0.1 + P
Z + 0.05Z + N(0,σ2

D)

γt = 0.14 + 3∆γt, ∆γt = 0.9∆γt−1 + N(0, σ2
γ)

logPobs
n = logPn + N(0,σ2

obs)

Observation: the concentration of plant pigments in the eastern

tropical Pacific from late 1997 to mid 2002 (NASA’s SeaWiFS)
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The filter results with 10 particles
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