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example: Ising model.

At each location of an N by N periodic lattice there is a spin
sz-j,o <1,7 <N, Sij = +1 or —1. The global state S is the set of
all spin values; there are 2N2 states.

The probability of a state is P(S) = exp(—BH(S))/Z,

where: H = —)_ J;; 18i585, £ 1S @ normalization constant,
J...= 1 if 15,45’ are neighbors, 0 otherwise.

F(S) is some function of S. Task: compute E[F] = > F(S)P(S).
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Suppose N=30: there are 2990 ~ 10300 states, too many to
enumerate.

Suppose B = 1, the ratio P(most likely state)/P(least likely
state) ~ e7200- no ab-initio sampling is possible.

Markov chain Monte Carlo (MCMC): chain S1,S55, ..., constructed
as follows: To go from S, to S, 41, make a move, accept it with
probability exp(—B(H (new) — H(old))). If move rejected, stay in
place.

If the move is to a state of higher probability, it is always ac-
cepted, a move to a state of lower probability is sometimes ac-
cepted.

Favors small moves; cluster algorithms improve matters.

Problem: free energy landscape may have multiple minima.



5/24

Goal: non-rejection sampling that samples states with a fre-
quency equal to their probability.

1D Ising model:

P(S) = Z~ 1 exp(—BH),
H=—> 5811,

or

P(S) = Z lexpW(89),
W(S) = KoY (si8;41) + Ao,
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S = "38-5,85-3,5-1,51,"" ",
S=...,5_9,50,50,84,---a, S=85US.
S=8US.

P(S) =52 texpW(5,5)
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Ansatz (Kadanoff renormalization):

P(8) = expwD),

et sisiv2 )7 — S cAot+Ko Y SiSi+1/7,
s

where >/ is the sum over s, = —1,+1, s4y = —1,+1,....
Condition:

For all values of sq, s3:

cA1TK1s153 — Z (€A0+K03132 1 6A0+K08283)
so==1



Solution:

1
Ky = 5 log cosh(2Kp),

1
Al = 5(|Og 24 2A0 + Kl).



10/24

More dimensions:

Py = Z Yexp(w(0)y,

w(0) — > i (Jz',j,lsi—l—l,j + J¢,j,2$¢,j+1> :
P = €W(1)/Zv

S =SuUS is the set of spins in Lg.

Pi(S) = M = 31 VS
3
or
w1 = log Z €W(O)(S).
3
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Extend the range of values of a spin in S:

Sip,jo — t € [—1,+1].

raw 0) _w(0)(s)

D
AW/ dt = =iy —

(> is a sum over S),

(1) (0)
aw® _ {dW | S] |
dt dt

A conditional expectation given S is an orthogonal projection
onto the space of functions of S, and we approximate it by
projecting onto the span of a finite basis of functions of S.
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Expand W in successive linkages (Kadanoff):
W=W;+Wr+4 ...

Sigjo — t € [—1,+1],

dW/dt = a local expansion.

Example:

W =3 s;s;41=1/2( -+ s1t +tsz+s3sa+...),

dw/dt = 5(s1 + s3).



Heuristics:
P(a,b) ~ P(a)P(b),
logP(a,b) ~ logP(a) + logP(b),

dP/dt ~ (d/dt)logP(a).
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Choice of basis: in 1D, the basis (tanh(8(s4o +t)),
tanh(B(s_> +t))) is exact.

dW/dt is not a linear function of t.
In 2D, tanh(B(s;;+t)), B determined in the projection process.
Once dW/dt has been determined, one obtains W by integration.

Warning: one cannot expect (82W)/(dt10ty) to be symmetric in
1,7, but in the probability density, one can use the symmetrized

matrix.
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Nested lattices:

2D is easy:

in 3D, divide a set of nodes into interior and boundary nodes,
interior nodes connected only to boundary nodes, small number
of boundary nodes.
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As one samples, one computes the probability of the sample:
Given the neighboring nodes, P, = exp Wy /(exp W4 +exp W_),
P =expW_/(expW, +expW_) are known. Accumulate their
logs.

log P(sample) = > log(P=x).

P(outcome) = exp W(0).

[ 9(@)f(@) = Blam] = | 9(@)(E) fo(a) = Elg(n)Q(n)], where
Q) = f(n'")/fo(n') are integration weights.

Here Q@ = P(outcome)/P(sample).

() reduces the number of effective samples.
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Calculating the expansion coefficients:

At each level, project dW/dt on a basis of functions of S, so that
dW/dt = c19(S) +copo(S)+. ... (important: always project from
the finest level ). The 4, are not assumed to be orthonormal.

Sample (assuming you know the sampling weights!) and accu-
mulate b, = E[dW/dtyy], A = E[lﬂﬂb]]

Solve for the vector ¢ of coefficients: Ac = b. (accumulation of
¢ produces bias).
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Near T., o IS nearly independent of level.

Balance n. of samples vs. n. of polynomials.

Once you have coefficients the samples are cheap.
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Bootstrapping the sampling:

Start with a guess of the expansion coefficients for each level:
c}fbé, n=iteration, f=level, j=coefficient.

Initial guess A9 =T,
b0 = cO=the assumed coefficients.

Given ¢", accumulate values of A,b;, every now and then set
ATl = (1/2)(A" 4+ 4), vt = (1/2)(B™ +b), then compute
Tl = (Ant+1)—1pntl. pecause of bias, do not accumulate c.
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Example 1: Ising model in 2D. Competitive with Metropolis, not
competitive with a cluster algorithm. Interesting connections
with the renormalization group.

Example 2: 3D Anderson-Edwards spin glass: H as before,
Jijke = N(0,1) random variables.

(We got the same bad results as everyone else but much faster).

Define: < . >p= average over one realization of the J...,
[-]4,=average over the J's.
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2

. 1,2 <o — N—
For two sets of spins S1 2 = {s; 7}, overlap gisq = N3 s} ;57 .

(]
The Binder cumulant is: g = 0.5(3 — [< ¢* >] 40/[< ¢ >7]) Ao

g = g(T') is “universal”, curves cross at T' = T¢.

Old calculation: log Q) goes up to 25; new calculation: log Q) goes
up to 4.
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The Binder cumulant g as a function of the temperature T in

the three-dimensional AE model
Oq | | | [ | |
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Histogram of weights for the Ising model, N = 32, 10% samples
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Another example: sampling a Brownian bridge (Weare), applica-
tion to filtering.

Variant: Parallel marginalization (Weare).



