Monte Carlo sampling without Markov chains

Alexandre Chorin, Jakub Kominiarczuk University of California, Berkeley example: Ising model.

At each location of an N by N periodic lattice there is a spin  $s_{ij}, 0 \le i, j \le N, s_{ij} = \pm 1$  or -1. The global state S is the set of all spin values; there are  $2^{N^2}$  states.

The probability of a state is  $P(S) = \exp(-\beta H(S))/Z$ ,

where:  $H = -\sum J_{ij,i'j'}s_{ij}s_{i'j'}$ , Z is a normalization constant,  $J_{...} = 1$  if ij, i'j' are neighbors, 0 otherwise.

F(S) is some function of S. Task: compute  $E[F] = \sum F(S)P(S)$ .



Suppose N=30; there are  $2^{900} \sim 10^{300}$  states, too many to enumerate.

Suppose  $\beta = 1$ , the ratio P(most likely state)/P(least likely state) ~  $e^{7200}$ - no ab-initio sampling is possible.

Markov chain Monte Carlo (MCMC): chain  $S_1, S_2, \ldots$ , constructed as follows: To go from  $S_n$  to  $S_{n+1}$ , make a move, accept it with probability  $\exp(-\beta(H(new) - H(old)))$ . If move rejected, stay in place.

If the move is to a state of higher probability, it is always accepted, a move to a state of lower probability is sometimes accepted.

Favors small moves; cluster algorithms improve matters.

Problem: free energy landscape may have multiple minima.

Goal: non-rejection sampling that samples states with a frequency equal to their probability.

1D Ising model:

$$P(S) = Z^{-1} \exp(-\beta H),$$
  
$$H = -\sum s_i s_{i+1},$$

or

$$P(S) = Z^{-1} \exp W(S),$$
  
W(S) = K\_0 \sum (s\_i s\_{i+1}) + A\_0,

$$A_0 = 0,$$
  
$$K_0 = \beta.$$

6/24

$$\hat{S} = \cdots, s_{-5}, s_{-3}, s_{-1}, s_1, \cdots,$$
$$\tilde{S} = \cdots, s_{-2}, s_0, s_2, s_4, \cdots a, \ S = \hat{S} \cup \tilde{S}.$$
$$S = \hat{S} \cup \tilde{S}.$$
$$P(\hat{S}) = \sum_{\tilde{S}} Z^{-1} \exp W(\hat{S}, \tilde{S})$$



Ansatz (Kadanoff renormalization):

$$P(\hat{S}) = \exp W^{(1)},$$

$$e^{A_1 + K_1 \sum s_i s_{i+2}} / Z = \sum_{\tilde{s}} e^{A_0 + K_0 \sum' s_i s_{i+1}} / Z,$$

where  $\Sigma'$  is the sum over  $s_2 = -1, +1$ ,  $s_4 = -1, +1, \ldots$ 

Condition:

For all values of  $s_1, s_3$ :  $e^{A_1 + K_1 s_1 s_3} = \sum_{s_2 = \pm 1} (e^{A_0 + K_0 s_1 s_2} + e^{A_0 + K_0 s_2 s_3})$  Solution:

$$K_{1} = \frac{1}{2} \log \cosh(2K_{0}),$$
  

$$A_{1} = \frac{1}{2} (\log 2 + 2A_{0} + K_{1}).$$

10/24

More dimensions:

$$P_{0} = Z^{-1} \exp(W^{(0)}),$$
  

$$W^{(0)} = \sum s_{i,j} \left( J_{i,j,1} s_{i+1,j} + J_{i,j,2} s_{i,j+1} \right).$$
  

$$P_{1} = e^{W^{(1)}} / Z,$$

 $S = \hat{S} \cup \tilde{S}$  is the set of spins in  $L_0$ .

$$P_1(\hat{S}) = e^{W^{(1)}} = \sum_{\tilde{S}} e^{W^{(0)}(S)}$$

or

$$W^{(1)} = \log \sum_{\tilde{S}} e^{W^{(0)}(S)}.$$

Extend the range of values of a spin in  $\hat{S}$ :

$$s_{i_0,j_0} \to t \in [-1,+1].$$
  
 $dW/dt = \frac{\sum' \frac{dW^{(0)}}{dt} e^{W^{(0)}(S)}}{\sum' e^{W^{(0)}(S)}},$ 

 $(\sum' \text{ is a sum over } \tilde{S}),$ 

$$\frac{dW^{(1)}}{dt} = E\left[\frac{dW^{(0)}}{dt} \mid \hat{S}\right]$$

A conditional expectation given  $\hat{S}$  is an orthogonal projection onto the space of functions of  $\hat{S}$ , and we approximate it by projecting onto the span of a finite basis of functions of  $\hat{S}$ . Expand W in successive linkages (Kadanoff):

$$W = W_1 + W_2 + \dots$$

$$s_{i_o,j_0} \to t \in [-1,+1],$$

dW/dt = a local expansion.

Example:

$$W = \sum s_i s_{i+1} = 1/2(\dots + s_1 t + t s_3 + s_3 s_4 + \dots),$$
$$dW/dt = \frac{1}{2}(s_1 + s_3).$$

## Heuristics:

 $P(a,b) \sim P(a)P(b),$ 

 $log P(a, b) \sim log P(a) + log P(b),$ 

 $dP/dt \sim (d/dt) log P(a).$ 

Choice of basis: in 1D, the basis  $(tanh(\beta(s_{+2}+t)), tanh(\beta(s_{-2}+t)))$  is exact.

dW/dt is not a linear function of t.

In 2D,  $tanh(B(s_{i'j'}+t))$ , B determined in the projection process.

Once dW/dt has been determined, one obtains W by integration.

Warning: one cannot expect  $(\partial^2 W)/(\partial t_1 \partial t_2)$  to be symmetric in i, j, but in the probability density, one can use the symmetrized matrix.



Nested lattices:

2D is easy:



in 3D, divide a set of nodes into interior and boundary nodes, interior nodes connected only to boundary nodes, small number of boundary nodes.

As one samples, one computes the probability of the sample:

Given the neighboring nodes,  $P_+ = \exp W_+ / (\exp W_+ + \exp W_-)$ ,  $P_- = \exp W_- / (\exp W_+ + \exp W_-)$  are known. Accumulate their logs.

 $\log P(sample) = \sum \log(P \pm).$ 

 $P(outcome) = \exp W^{(0)}.$ 

 $\int g(x)f(x) = E[g(\eta)] = \int g(x)(\frac{f(x)}{f_0(x)})f_0(x) = E[g(\eta')Q(\eta')], \text{ where } Q(\eta') = f(\eta')/f_0(\eta') \text{ are integration weights.}$ 

Here Q = P(outcome)/P(sample).

Q reduces the number of effective samples.

Calculating the expansion coefficients:

At each level, project dW/dt on a basis of functions of  $\hat{S}$ , so that  $dW/dt = c_1\psi(\hat{S}) + c_2\psi_2(\hat{S}) + \dots$  (important: always project from the finest level !). The  $\psi_i$  are not assumed to be orthonormal.

Sample (assuming you know the sampling weights!) and accumulate  $b_k = E[dW/dt\psi_k], \quad a_{ij} = E[\psi_i\psi_j].$ 

Solve for the vector c of coefficients: Ac = b. (accumulation of c produces bias).

Near  $T_c$ ,  $\alpha$  is nearly independent of level.

Balance n. of samples vs. n. of polynomials.

Once you have coefficients the samples are cheap.

Bootstrapping the sampling:

Start with a guess of the expansion coefficients for each level:  $c_{i,\ell}^n$ , n=iteration,  $\ell=$ level, j=coefficient.

Initial guess  $A^0 = I$ ,  $b^0 = c^0$ =the assumed coefficients.

Given  $c^n$ , accumulate values of A, b; every now and then set  $A^{n+1} = (1/2)(A^n + A), \quad b^{n+1} = (1/2)(B^n + b)$ , then compute  $c^{n+1} = (A^{n+1})^{-1}b^{n+1}$ ; because of bias, do not accumulate c.

Example 1: Ising model in 2D. Competitive with Metropolis, not competitive with a cluster algorithm. Interesting connections with the renormalization group.

Example 2: 3D Anderson-Edwards spin glass: *H* as before,  $J_{ijk\ell} = N(0, 1)$  random variables.

(We got the same bad results as everyone else but much faster).

Define:  $\langle \cdot \rangle_T$  = average over one realization of the  $J_{\dots}$ , [·]<sub>Av</sub> = average over the J's.

For two sets of spins 
$$S_{1,2} = \{s_{ijk}^{1,2}\}$$
, overlap  $q$  is  $q = N^{-3} \sum s_{i,j,k}^{1} s_{i,j,k}^{2}$ .

The Binder cumulant is:  $g = 0.5(3 - [\langle q^4 \rangle]_{Av}/[\langle q^2 \rangle_T]_{Av})$ .

g = g(T) is "universal", curves cross at  $T = T_c$ .

Old calculation:  $\log Q$  goes up to 25; new calculation:  $\log Q$  goes up to 4.

The Binder cumulant g as a function of the temperature T in the three-dimensional AE model



23/24

Histogram of weights for the Ising model, N = 32,  $10^4$  samples



Another example: sampling a Brownian bridge (Weare), application to filtering.

Variant: Parallel marginalization (Weare).