
Monte Carlo sampling without Markov chains

Alexandre Chorin, Jakub Kominiarczuk
University of California, Berkeley



2/24

example: Ising model.

At each location of an N by N periodic lattice there is a spin

sij,0 ≤ i, j ≤ N , sij = +1 or −1. The global state S is the set of

all spin values; there are 2N2
states.

The probability of a state is P(S) = exp(−βH(S))/Z,

where: H = −∑
Jij,i′j′sijsi′j′, Z is a normalization constant,

J··· = 1 if ij, i′j′ are neighbors, 0 otherwise.

F(S) is some function of S. Task: compute E[F ] =
∑

F(S)P(S).



(i,j)
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Suppose N=30; there are 2900 ∼ 10300 states, too many to
enumerate.

Suppose β = 1, the ratio P(most likely state)/P(least likely
state) ∼ e7200- no ab-initio sampling is possible.

Markov chain Monte Carlo (MCMC): chain S1, S2, . . . , constructed
as follows: To go from Sn to Sn+1, make a move, accept it with
probability exp(−β(H(new) − H(old))). If move rejected, stay in
place.

If the move is to a state of higher probability, it is always ac-
cepted, a move to a state of lower probability is sometimes ac-
cepted.

Favors small moves; cluster algorithms improve matters.

Problem: free energy landscape may have multiple minima.



5/24

Goal: non-rejection sampling that samples states with a fre-

quency equal to their probability.

1D Ising model:

P(S) = Z−1 exp(−βH),
H = −∑

sisi+1,

or

P(S) = Z−1 expW (S),

W (S) = K0
∑

(sisi+1) + A0,

A0 = 0,

K0 = β.
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Ŝ = · · · , s−5, s−3, s−1, s1, · · · ,

S̃ = · · · , s−2, s0, s2, s4, · · · a, S = Ŝ ∪ S̃.

S = Ŝ ∪ S̃.

P(Ŝ) =
∑

S̃ Z−1 expW (Ŝ, S̃)
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Ansatz (Kadanoff renormalization):

P(Ŝ) = expW (1),

eA1+K1
∑

sisi+2/Z =
∑

s̃

eA0+K0
∑′ sisi+1/Z,

where
∑′ is the sum over s2 = −1,+1, s4 = −1,+1, . . . .

Condition:

For all values of s1, s3:

eA1+K1s1s3 =
∑

s2=±1
(eA0+K0s1s2 + eA0+K0s2s3)



Solution:

K1 =
1

2
log cosh(2K0),

A1 =
1

2
(log 2 + 2A0 + K1).
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More dimensions:

P0 = Z−1 exp(W (0)),

W (0) =
∑

si,j

(
Ji,j,1si+1,j + Ji,j,2si,j+1

)
.

P1 = eW (1)
/Z,

S = Ŝ ∪ S̃ is the set of spins in L0.

P1(Ŝ) = eW (1)
=

∑

S̃

eW (0)(S)

or

W (1) = log
∑

S̃

eW (0)(S).
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Extend the range of values of a spin in Ŝ:

si0,j0 → t ∈ [−1,+1].

dW/dt =
∑′ dW (0)

dt eW (0)(S)

∑′ eW (0)(S)
,

(
∑′ is a sum over S̃),

dW (1)

dt
= E



dW (0)

dt
| Ŝ



 .

A conditional expectation given Ŝ is an orthogonal projection
onto the space of functions of Ŝ, and we approximate it by
projecting onto the span of a finite basis of functions of Ŝ.
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Expand W in successive linkages (Kadanoff):

W = W1 + W2 + . . .

sio,j0 → t ∈ [−1,+1],

dW/dt = a local expansion.

Example:

W =
∑

sisi+1 = 1/2(· · · + s1t + ts3 + s3s4 + . . . ),

dW/dt = 1
2(s1 + s3).



Heuristics:

P(a, b) ∼ P(a)P(b),

logP(a, b) ∼ logP(a) + logP(b),

dP/dt ∼ (d/dt)logP(a).
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Choice of basis: in 1D, the basis (tanh(β(s+2 + t)),
tanh(β(s−2 + t))) is exact.

dW/dt is not a linear function of t.

In 2D, tanh(B(si′j′ + t)), B determined in the projection process.

Once dW/dt has been determined, one obtains W by integration.

Warning: one cannot expect (∂2W )/(∂t1∂t2) to be symmetric in
i, j, but in the probability density, one can use the symmetrized
matrix.

?
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Nested lattices:

2D is easy:

in 3D, divide a set of nodes into interior and boundary nodes,

interior nodes connected only to boundary nodes, small number
of boundary nodes.
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As one samples, one computes the probability of the sample:

Given the neighboring nodes, P+ = expW+/(expW+ +expW−),
P− = expW−/(expW+ + expW−) are known. Accumulate their
logs.

logP(sample) =
∑

log(P±).

P(outcome) = expW (0).

∫
g(x)f(x) = E[g(η)] =

∫
g(x)( f(x)

f0(x)
)f0(x) = E[g(η′)Q(η′)], where

Q(η′) = f(η′)/f0(η′) are integration weights.

Here Q = P(outcome)/P(sample).

Q reduces the number of effective samples.
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Calculating the expansion coefficients:

At each level, project dW/dt on a basis of functions of Ŝ, so that

dW/dt = c1ψ(Ŝ)+c2ψ2(Ŝ)+. . . . (important: always project from
the finest level !). The ψi are not assumed to be orthonormal.

Sample (assuming you know the sampling weights!) and accu-
mulate bk = E[dW/dtψk], aij = E[ψiψj].

Solve for the vector c of coefficients: Ac = b. (accumulation of
c produces bias).
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Near Tc, α is nearly independent of level.

Balance n. of samples vs. n. of polynomials.

Once you have coefficients the samples are cheap.
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Bootstrapping the sampling:

Start with a guess of the expansion coefficients for each level:
cn
j,&, n=iteration, &=level, j=coefficient.

Initial guess A0 = I,

b0 = c0=the assumed coefficients.

Given cn, accumulate values of A, b; every now and then set

An+1 = (1/2)(An + A), bn+1 = (1/2)(Bn + b), then compute
cn+1 = (An+1)−1bn+1; because of bias, do not accumulate c.
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Example 1: Ising model in 2D. Competitive with Metropolis, not

competitive with a cluster algorithm. Interesting connections
with the renormalization group.

Example 2: 3D Anderson-Edwards spin glass: H as before,
Jijk& = N(0,1) random variables.

(We got the same bad results as everyone else but much faster).

Define: < · >T= average over one realization of the J···,
[·]Av=average over the J’s.
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For two sets of spins S1,2 = {s1,2
ijk}, overlap q is q = N−3 ∑

s1i,j,ks2i,j,k.

The Binder cumulant is: g = 0.5(3 − [< q4 >]Av/[< q2 >T ]Av.

g = g(T) is “universal”, curves cross at T = Tc.

Old calculation: logQ goes up to 25; new calculation: logQ goes
up to 4.
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The Binder cumulant g as a function of the temperature T in
the three-dimensional AE model
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Histogram of weights for the Ising model, N = 32, 104 samples
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Another example: sampling a Brownian bridge (Weare), applica-
tion to filtering.

Variant: Parallel marginalization (Weare).


