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Applications that break 
techniques 



In Memoriam 
23 Jan 1924 – 17 July 1998  
“James Lighthill was acknowledged 
throughout the world as one of the great 
mathematical scientists of this century. He 
was the prototypical applied mathematician, 
immersing himself thoroughly in the essence 
and even the detail of every engineering, 
physical, or biological problem he was 
seeking to illuminate with mathematical 
description, formulating a sequence of clear 
mathematical problems and attacking them 
with a formidable range of techniques 
completely mastered, or adapted to the 
particular need, or newly created for the 
purpose, and then finally returning to the 
original problem with understanding, 
predictions, and advice for action.”  
 
(from the David Crighton memorial in  
AMS Notices) 



Plan of series 
  Theme: role of mathematics in Computational Science 

& Engineering, specifically large-scale simulation 
  Our philosophy will be to look at the scientific 

opportunity of large-scale simulation from three 
perspectives, concentrating one lecture on each 
  Applications, Architectures, Algorithms 

  FSU Lighthill lectures are presumed neither cumulative 
nor exclusive 
  Individuals may attend any one without prerequisite 
  Individuals invited to attend all three (Engineering, 

Mathematics, Public) 

  This requires a modicum of audience patience for either 
  Delegation (individual lectures not completely self-contained) 
  Repetition (lectures have some overlap) 



Purpose of the Engineering presentation 
  Expose the structure of a large multidisciplinary CS&E 

initiative 
  SciDAC  
  in its tenth year, hopefully to be continued by the 112th Congress 

  Convey some of the fun of multidisciplinary 
collaborations between applications and mathematics 

  Signal some specific topics for further discussion during 
the week  



Outline of the Engineering presentation 
  Applied and computational mathematics in the U.S. 

Scientific Discovery through Advanced Computing 
program (SciDAC) 

  The cornerstone of many large-scale simulations: the 
linear solver 

  Applications that have “broken” standard solvers, and led 
to some advances (all remain “in progress”) 
  Fusion (Off. of Fusion Energy Sciences) 
  Ice sheet fracture (Off. of Biological and Environmental Sciences) 
  Quantum chromodynamics (Off. of High Energy and Nuclear Physics) 
  Phase separation (Off. of Basic Energy Sciences) 

  Summary and audience interaction 



   CS 

 Math 

Applications 

Enabling 
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SciDAC philosophy: common cyberinfrastructure 



Required cyberinfrastructure 
      Model-related 

  Geometric modelers 
  Meshers 
  Discretizers 
  Partitioners 
  Solvers / integrators 
  Adaptivity systems 
  Random no. generators 
  Subgridscale physics  
  Uncertainty 

quantification 
  Dynamic load balancing 
  Graphs and 

combinatorial algs. 
  Compression  
 

        Development-related        
  Configuration systems 
  Source-to-source 

translators 
  Compilers 
  Simulators 
  Messaging systems 
  Debuggers 
  Profilers 
 

      Production-related 
  Dynamic resource 

management 
  Dynamic performance 

optimization 
  Authenticators 
  I/O systems 
  Visualization systems 
  Workflow controllers 
  Frameworks 
  Data miners 
  Fault monitoring, 

reporting, and recovery 

High-end computers come 
with little of this stuff. 

Most has to be contributed 
by the user  community 



V&V 
loop 

Performance 
loop 

c/o T. Dunning, 2000 

Designing a simulation code – 
the diagram that launched the SciDAC program 



 
SciDAC’s four computational math centers 

  Interoperable Tools for Advanced Petascale Simulations (ITAPS) 
  PI: L. Freitag-Diachin, LLNL 

For complex domain geometry 
  Algorithmic and Software Framework for Partial Differential 

Equations (APDEC) 
  PI: P. Colella, LBNL 

For solution adaptivity  
  Combinatorial Scientific Computing and Petascale Simulation 

(CSCAPES) 
  PI: A. Pothen, Purdue U 

For partitioning and ordering 
  Towards Optimal Petascale Simulations (TOPS) 
   PI: D. Keyes, Columbia U (since 2009: E. Ng, LBNL) 

For scalable solution 
 

See: www.scidac.gov/math/math.html 



The TOPS center spans 4 labs and 5 universities 

 Towards Optimal Petascale Simulations 

Our mission: Enable scientists and engineers to take full advantage 
of petascale hardware by overcoming the scalability bottlenecks 
traditional solvers impose, and assist them to move beyond “one-
off” simulations to validation and optimization (~$32M/10 years) 

Columbia University University of Colorado University of Texas 
Southern Methodist 

University 

Lawrence Livermore 
National Laboratory 

Sandia National Laboratories 
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  SciDAC project TOPS features these 
trusted packages, whose principal functions 
are keyed to the chart at the right: 

  hypre, PETSc, 
  SUNDIALS, SuperLU, 
  TAO, Trilinos, [PARPACK] 

    These are in use and actively debugged in 
dozens of high-performance computing 
environments, in dozens of applications 
domains, by thousands of user groups 
around the world 

  TOPS maintains about half of the software 
presented at DOE’s ACTS toolkit tutorials 

 

Optimizer 

Linear 
solver 

Eigensolver 

Time 
integrator 

Nonlinear 
solver 

Indicates 
dependence 

Sens. Analyzer 
TAO, Tri SUN, Tri 

PET, 
SUN, Tri 

PAR, 
SLU, Tri 

PET, Tri 

PET, hyp, 
SLU, Tri 

TOPS has built a toolchain of solver components 
that (increasingly) interoperate 



TOPS usage outside of SciDAC proper 

  Astronomy 
  Biomechanics 
  Chemistry 
  Climate 
  Cognitive Sciences 
  Combustion 
  Economics 
  Electrical Engineering 
  Finance 
  Geosciences 
  Hydrodynamics 
  Materials Science 
  Mechanics 
  Medical 
  Micromechanics/Nanotechnology 
  Numerical Analysis 
  Optics 
  Porous Media 
  Shape Optimization 

In articles, proceedings, theses: 
  Cray LibSci® 

  deal.II (2007 Wilkinson Prize) 
  Dspice 
  EMSolve 
  FEMLAB® 

  FIDAP® 
  GlobalArrays 
  HP Mathematical Library® 
  IMSL ® 

  libMesh 
  Magpar 
  Mathematica® 

  NAG ® 

  NIKE 
  Prometheus 
  SCIRun 
  SciPy 
  SLEPc 
  Snark 

In widely distributed software: 

Thousands of groups around the world use TOPS software without directly collaborating 



   Adams           Baker                Cai               Demmel          Falgout          Ghattas 

   Heroux            Hu              Kaushik             Keyes            Knepley               Li           

Manteuffel   McCormick   McInnes         Moré            Munson            Ng           Reynolds 

  Rouson         Salinger          Smith       Woodward      C. Yang        U. Yang         Zhang 

Faces of TOPS – the coauthors of this presentation J 



It’s all about solvers at large scale 
  Given, for example:  

  a “physics” phase that 
scales as O(N)  

  a “solver” phase that 
scales as O(N3/2) 

  computation is almost all 
solver after several 
doublings 

  Most applications groups 
have not yet “felt” the 
impact of this curve in 
their gut 
  as users actually get into 

queues with more than 
4K processors, this will 
change 
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Review: two definitions of scalability 
  “Strong scaling” 

  execution time (T) decreases in 
inverse proportion to the number 
of processors (p) 

  fixed size problem (N) overall 
  often instead graphed as 

reciprocal, “speedup” 

  “Weak scaling” (memory 
bound) 
  execution time remains constant, 

as problem size and processor 
number are increased in 
proportion 

  fixed size problem per processor 
  also known as “Gustafson scaling” 

T   

p 
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N ∝ p 

log T 

log p 
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Slope
= -1 
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  Algebraic multigrid a key algorithmic technology 

  Discrete operator defined for finest grid by the application, itself, and for many 
recursively derived levels with successively fewer degrees of freedom, for solver 
purposes only 

  Unlike geometric multigrid, AMG not restricted to problems with “natural” 
coarsenings derived from grid alone 

  Optimality (cost per cycle) intimately tied to the ability to 
coarsen aggressively 

  Convergence scalability (number of cycles) and parallel 
efficiency also sensitive to rate of coarsening 

�

Solvers are scaling: 
hypre’s algebraic multigrid (AMG) on BlueGene 

Figure shows weak scaling result for AMG out to 
120K processors, with one 25×25×25block per 
processor (up to ~2B DOFs)  procs 

  While much research and 
development remains, multigrid 
is practical at extreme 
concurrency 
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c/o U. M. Yang, LLNL 



  
Iterative correction: 

a generator of scalable algorithms 
  The most basic idea in iterative methods for  Ax = b 

  Evaluate residual accurately, but solve approximately, 
where        is an approximate inverse to  A 

  A sequence of complementary solves can be used, e.g., 
with        first and then         one has 
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  Scale recurrence, e.g., with                                          , 
leads to multilevel methods 

  Characteristic choices of R lead to domain decomposition  
  Optimal polynomials of                 lead to various 

preconditioned Krylov methods 



smoother 

Finest Grid 

First Coarse Grid 
coarser grid has fewer cells 

 (less work & storage) 

Restriction 
transfer from fine 
to coarse grid 

Recursively apply this 
idea until we have an 
easy problem to solve 

A Multigrid V-cycle 

Prolongation 
transfer from coarse 
to fine grid 

Multigrid treats each error component  
in an appropriate subspace 

c/o R. Falgout, LLNL 



Domain decomposition puts off limitation of 
Amdahl’s Law in weak scaling 

Partitioning of the grid induces 
block structure on the system 
matrix (Jacobian) 

Computation scales with area; 
communication scales with 
perimeter; ratio fixed in weak 
scaling 

Ω1 

Ω2 

Ω3 

A23 A21 A22 
rows assigned 

to proc “2” 



DD relevant to any local stencil formulation 

finite differences finite elements finite volumes 

•   lead to sparse Jacobian matrices  
J= 

node i 

row i 
•   however, the inverses are 
generally dense; even the factors 
suffer unacceptable fill-in in 3D 
•   want to solve in subdomains only, 
and use to precondition full sparse 
problem 



Krylov-Schwarz:  
a linear solver “workhorse” 

Krylov 
accelerator 

spectrally adaptive 

! 

Ax = b
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x =
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Schwarz 
preconditioner 
parallelizable 
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Krylov bases for sparse systems 

  E.g., conjugate gradients (CG) for symmetric, positive definite 
systems, and generalized minimal residual (GMRES) for 
nonsymmetry or indefiniteness  

  Krylov iteration is an algebraic projection method for converting 
a high-dimensional linear system into a lower-dimensional linear 
system 
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Schwarz domain decomposition method 

  Consider restriction and extension 
operators for subdomains,           ,      
and for possible coarse grid, 

  Replace discretized                   with 

  Solve by a Krylov method 
  Matrix-vector multiplies with  

  parallelism on each subdomain 
  nearest-neighbor exchanges, global reductions 
  possible small global system (not needed for parabolic case) 
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Remainder of the presentation 
  Four vignettes 

  Fusion 
  Ice sheet fracture 
  Quantum chromodynamics 
  Phase separation 

  For each, a simple story 
  Application encounters limitations with existing solver 
  Interaction ensues between application scientist and TOPS 

computational mathematics group 
  Solutions are proposed, sometimes off-the-shelf, but usually in 

prolonged co-development 
  Application advances to next hurdle 
  Solutions get added to the infrastructure 



Contract for Vacuum Vessel signed 14 Oct 2010 

     Top-to-bottom exascale 
computation is believed essential 
for efficient design and operation 
of large-scale experiments  

–  Typical ITER discharge is estimated at $1M  
–  US will get so many “shots” per month 
–  Chief goal is to understand disruptions that 

could plague a practical power generating 
device 

ITER, an $11B multinational project 
currently under construction 
 in Cadaraches, France, aims to  
demonstrate magnetically confined 
fusion by 2020; photo at right shows 
tokamak pit at the far end of the 
construction site. 

Application #1: MHD models of 
magnetically confined fusion 



MHD codes predict onset of instabilities critical to 
ITER, and explore control scenarios 
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c/o A. Koniges, LBNL 



WARNING: The following two slides are 
rated 

E	
 
for explicit equations. 

No audience may look unless accompanied by 
a mathematician or engineer. 
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MHD: Maxwell coupled to Navier-Stokes 

! 

A ="#$ + R#f % #$

! 

V = R2"U # "$ +"%& + v'R"$

Vector potential, A, gives the expansions 

Scalar potentials, U, f, χ, and ψ, give the expansions (in 
(R,Φ,Z) coordinates): 



MHD in scalar potential form 



M3D-C0: multigrid for optimality  

  M3D code 
  unstructured mesh, hybrid FE/FD 

discretization with C0 elements in 
each poloidal crossplane 

  linear systems  (>90% exe. time) 

  TOPS collaboration 
  Replaced generic additive Schwarz 

(ASM) preconditioner with three 
different solvers tuned to coefficient 
structure, including algebraic 
multigrid (AMG) from hypre 

  achieved mesh-independent 
convergence rate  

  ~5× improvement in execution time 
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c/o S. Jardin, et al. 



M3D-C1 code development 
Existing M3D code 

needed to be upgraded 
Numerous discussions:  

Math-CS-physics 
Required new work in 

all areas 

•   low order accuracy 
not sufficient to 
resolve multi-scale 
phenomena  (current 
sheets) 

•  grid construction and 
adaptation not optimal 
for current sheets 

•  time-step restriction 
too severe for slowly 
growing modes 

•   3D C1 high-order FE 
allows fully implicit 
compact system 

•   make use of ITAPS 
mesh and adaptation 
libraries and data 
structure 

•  use TOPS block-
Jacobi preconditioner 
that recognizes tight 
point-block and looser 
interplane couplings 

•   Physics team 
completely recodes 
M3D using new 
higher-continuity, 
higher-order elements 

•  ITAPS makes many 
extensions as needed 
for periodic torus 

•  TOPS team adds new 
capabilities as required 
for preconditioner from 
SuperLU 

c/o S. Jardin, PPPL 



M3D-C1 benchmarking 
Development went through four stages of increasing 
complexity where useful results and critical benchmarking 
were performed at each step 

 2D slab 2D torus  3D L torus  3D NL torus 

t=32

Two-fluid 
magnetic 
reconnection 
in model 
geometry 

Two-fluid 
tokamak 
equilibrium 
with flow 
included 

Linear study 
of edge 
localized 
modes in 
tokamak 

Nonlinear 
internal 
reconnection 
event in 
tokamak 



Close-up of the resolution of edge-localized 
modes 

Typical 3D C1 wedge element obtained 
by tensoring 2D basis with Hermites in 
the toroidal direction. 



 
  Fusion group has a toolkit of linear solvers to call 

dynamically from the command line (PETSc) 
  field-by-field scalar elliptic and time-implicit solvers 
  point-blocked solvers for tighter coupling of fields 
  direct sparse solver with fill-minimizing ordering (SuperLU) for 2D 

poloidal planes and other aggregates 
  algebraic multigrid solvers  
  additive Schwarz extensions to precondition 3D problems 
  Krylov accelerators 

  Current solver allows physicists to move about on a spectrum 
from robustness to optimality, with orders of magnitude 
runtime improvements over the robust default of direct 
sparse solves, at relevant contemporary granularities 

Fusion simulation: current status 



Application #2: fracture in ice sheets  
  Ice sheets sitting on Greenland and Antarctica keep 77% of the world’s 

freshwater locked up “high and dry” 
  Average thickness 2.1 kilometers; now cover 10% of Earth’s land area 
  If all the fresh water land-locked in ice sheets and glaciers were to melt, it 

would cause a sea level rise of nearly 80 meters 
  In the last century, sea levels 

have risen about 0.2 meters 
  On 6 Aug 2010, a piece of the 

Greenland ice sheet 4X the size 
of Manhattan fell into the sea 

  Primary mechanism for losses: 
  sliding off land 
  calving at overhanging shelves 
  accelerated by fracture 

  Climate models currently lack 
these dynamics 
 

c/o Wikipedia Commons 



Ice sheet (on land)  
vs.  

ice shelf (over sea) 

c/o Wikipedia Commons 

c/o M. Nutter, Encyclopedia Britannica 



Ice sheet/shelf modeling:  
start with linear elasticity  

c/o H. Waisman, Columbia University 

•   Cracks can be homogenized into 
the stress-strain constitutive 
relationship with a “damage” 
assumption, or they can be 
explicitly treated 
•   However, explicit transient 
Lagrangian remeshing can be 
complex  

•   Better to add new 
degrees of freedom 
rather than new mesh 
points? 
•  Have just received 
some ice sheet geometry  
data from the field; this 
talk is  preliminary to 
the real application and 
is limited to 2D 



Components of our computational model 
  Extended finite elements (XFEM) 

  XFEM developed in 1999 by Belytschko et al. at Northwestern to extend 
finite elements to problems with cracks (or other discontinuities) without 
slavish remeshing 

  Here, it is applied to brittle fracture 

  Algebraic multigrid (AMG) solvers based on smoothed 
aggregation prolongators 
  SA-AMG developed in 1996 by Vanek et al.  at Denver to build operator 

information into the coarsening strategy 

  Domain decomposition (DD) to isolate the extra DOFs of XFEM 
in a small problem 
  Of the three main reasons for DD: (1) isolate different physics in different 

computational regimes, (2) achieving near-optimal sequential 
computational complexity, (3) scaling implicit finite element solvers to 
massively parallel computers, we are most closely related to the first, with 
a twist: isolating different discretizations 



Computational modeling of fracture 
Classical FEM approach to fracture: 
•  Mesh conforms to crack boundaries 
•  Crack propagation requires remeshing at 

each step 
•  Requires double-nodes for crack opening and 

fine mesh for tip singularities 

XFEM approach: 
•  Base mesh independent of crack geometry 
•  Crack propagation requires adding 

“enriched” DOF with special basis 
functions to existing nodes 
•  Crack geometry defined through intersections 

of  two levelset functions (for each crack), 
normal and tangential 

•  Discontinuities and singularities captured 
through special basis functions (enrichments) 

•  Enrichments have local support 

XFEM mesh 

Stresses in y direction when bottom 
edge fixed and uniform traction 

applied on top edge in y direction   



XFEM: employ regular elements and add degrees 
of freedom to parameterize the crack(s) 

 Crack DOFs:  
Heaviside functions 
   
☐    Crack-tip DOFs: 
analytical singularities 
 

Single crack in 2D, zoom Multiple cracks in 2D 

The number of extended DOFs 
should be relatively “small” but 
can still be algebraically 
significant, worse in 3D 
   



XFEM for fracture 

XFEM Discrete 
model: 
(Belytschko et al. 1999) 

Enrichment 
functions: 

XFEM element 
stiffness  matrix: 

XFEM linear 
system 
after assembly: 

Good methods 
exist for the red 
block, e.g., AMG 

Reg DOFs Line DOFs Tip DOFs 



Schwarz approach builds preconditioner out of  
ambient “healthy” piece and local crack pieces 



Structure of the Axx block 

• Enriched DOF 
grouped together at 
the end in ux 

• Axx  small 
compared to Arr for 
relatively small 
number of cracks 
• Dense blocks in Axx  
correspond to tip 
functions 

Sparsity pattern of A Sparsity pattern of Axx 

XFEM mesh 



Cracks embedded with random angle 
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AMG brute force

Additive Schwarz!AMG multiple

Additive Schwarz!AMG gathered

Multiplicative Schwarz!AMG multiple

Multiplicative Schwarz!AMG gathered

Exact Schwarz multiple

Exact Schwarz gathered

Student Version of MATLAB

Brute-force AMG poor on the overall system  
but handles the Arr piece, with LU/ILU on the 

Schwarz blocks of the Axx  

c/o L. Berger-Vergiat, Columbia University 



Quasi-AMG 

Before                                                                After 
Each color represents one aggregate at the coarse level 

•  Aggregates form the “coarse” nodes on the next level 
•  Aggregates should respect crack boundaries; otherwise, 

coarsening couples across cracks 
•  Break the graph edges in A corresponding to couplings 

across the crack interfaces using levelset information 
•  Results in aggregates that respect crack boundaries 



Test cases 

Single Propagating Crack Two Cracks 

Six Cracks Inclined Cracks 

• Both edge cracks and interior cracks are considered 
• For each crack-configuration, following mesh densities are 

considered 
o  30 x 30 
o  60 x 60 
o  90 x 90 
o  120 x 120 



Numerical results 

c/o R. Tuminaro, Sandia 



Remark on coarsening  

Currently, only regular DOFs are currently coarsened. This 
works well when there are few cracks, but limits scalability for 
problems with many cracks. We are currently considering 
special coarsening of some enrichment functions.   

Not to scale 



Ice-sheet modeling: current status 
  Straightforward Schwarz approach to employ AMG 

in XFEM by avoiding the irregular blocks of the 
enriched degrees of freedom 

  Uses only blackbox solvers 
  Crack-sensitive prolongator for AMG is yet further 

superior 
  Current AMG solver coarses “healthy” domains, but 

preserves extended degrees of freedom, resulting in increasing 
relative size of extended DOFs at coarser levels 

  Challenge looms in 3D, where extended DOFs live on 
2D crack surfaces 



Application #3: Quantum 
Chromodynamics 

QCD is the theory of strong 
forces in the Standard 
Model of particle physics. It 
Describes the structure of 
nucleons, which are made 
up of quarks interacting in a 
gluon field. 
 
The lattice is typically 4- or 
5-dimensional, and the fields 
consist of 12 components at 
each node.  The gluon field 
mixes the components 
through unitary matrix 
coefficients on each edge. 
 

The regularity of the mesh and the high resolution required has long suggested 
multigrid to physicists, but prior to SciDAC, achievements were limited. 
 



R. C. Brower, R. Edwards, C.Rebbi,and E. Vicari, 
"Projective multigrid for Wilson fermions", Nucl. Phys.B366 (1991) 689 

(a.k.a. “Spectral AMG”, Tim Chartier, 2000) 



3x3 Unitary :  U(x,x+µ) = exp[i a Aµ(x)] and  U(x,x-µ) = U*(x-µ,x)  

The Dirac PDE   (for Quarks )  

xµ = (x1,x2,x3,x4)  
(space,time)  

4x4 sparse spin matrices: 
 4 non-zero entries 1,-1, i, -i 

3x3 color gauge  
    matrices 

On a Hypercubic Lattice   (xµ = integer, a = lattice 
spacing): 

c/o R. Brower, Boston University 



Scalable solvers for the Dirac equations 
in QCD have been elusive until now  

 
  Challenges in solving the Dirac equations 

  System is complex and indefinite 
  System can be extremely ill-conditioned 
  Near null space is unknown and oscillatory 

Two-dimensional model problem for the a scalar complex field, 
showing an “instanton”, or a null-space mode of the Dirac operator 

       

              Real Part                                      Imaginary Part 



The importance of the near null space 
  Multigrid (MG) methods are based on 

knowledge of the near null space 
  For the Laplacian, these are the smoothest 

modes and are well approximated 
geometrically 

  Generally, for indefinite (oscillatory) 
problems, smooth modes are irrelevant 

  Algebraic Multigrid (AMG) uses matrix 
coefficients 
  Automatically coarsens “grids” 

  Error left by relaxation is algebraically 
smooth 

  Coarsening must interpolate small 
eigenmodes well 



Adaptive smoothed aggregation (αSA) 
automatically builds the coarse space 

  Generate the basis one vector at a time 
  Start with relaxation on Au=0 à u1 à αSA(u1)  
  Use αSA(u1) on Au=0 à u2 à αSA(u1,u2)  
  Iterate until we have a good coarse basis 

  Setup is expensive, but is amortized over many 
right-hand sides 

  Published in 2004 by SciDAC TOPS team 
  Brezina, Falgout, MacLachlan, Manteuffel, McCormick, and Ruge, 
“Adaptive smoothed aggregation (αSA),” SIAM J. Sci. Comput. (2004) 

  Demonstrated in 2D QED in 2005 
  Brannick, Brezina, Keyes, Livne, Livshits, MacLachlan, Manteuffel, 

McCormick, Ruge, and Zikatanov, “Adaptive smoothed aggregation in 
lattice QCD,” Springer (2006) 

  Subsequently migrated to realistic models 



4D Wilson-Dirac Results 
αSA-MG shows no slowing down 

  Parameters: N=163x32, β=6.0, mcrit = -0.8049 
  MG Parameters: 44x3x2 blocking, 3 levels, W(2,2,4) cycle, Nv = 20, 

setup run at mcrit 
c/o R. Brower, Boston University 



4D Wilson-Dirac outpaces competition 
at all quark masses 



QCD Dirac solves: current status 
  Adaptive Smoothed Aggregation Algebraic Multigrid 

is expensive to use just once due to set up costs, but in 
QCD applications, where the same gluon coefficient 
field is used tens to hundreds of times on different 
right-hand sides, it is a paradigm shifter 

  The superiority of the method increases with the 
resolution of the problem and the approach of quark 
mass to physically realistic values 

  Complicated algorithm, with data-dependent sparsity 
is challenging to encode as efficiently as brute-force 
methods, but this is now underway – even on GPUs 



Application #4: Modeling phase separation 
with Cahn-Hilliard 

3D visualization of membrane porosity 
  
c/o K.-V. Peinemann, KAUST 



High density, high regularity membranes 



Spinodal decomposition 
(Cahn & Hilliard, J. Chem. Phys. 1958) 

c/o Chao Yang, CAS 



Sharp (Lagrangian) vs. diffuse (Eulerian) models 



General form of Cahn-Hilliard model 



Parameterizations 
  Case 1: ideal 

 

 

  Case 2: realistic 
  



Time discretization (1) 



Stability through energy splitting 
  The numerical scheme should discretely obey energy decay 

  Energy splitting (Eyre’98, He’07, Shen’10) breaks energy 
into a convex and a concave part 
  Keep convex on the LHS (implicit), where it enhances 

definiteness 
  Keep concave on the RHS (explicit), lest it oppose 

definiteness 

     



Time discretization (2) 
  Case 2: realistic (variable mobility) 

 

 

  



Time discretization (3) 
  The rate of evolution of the interface varies enormously, 

becoming extremely slow near minimum surface area 
equilibrium 

  A main interest is to get stably to long-term configuration 
  Use “Switched Evolution-Relaxation” (SER) of Mulder & 

Van Leer (1985)  
  build up time step in inverse proportion to some fractional power of 

steady-state residual decrease 
  subject to maximum increase and minimum decrease ratio 

  Initially, Δt ≈ O(ε2)  
  Robustification feature 

  if Newton diverges, recursively halve the timestep 
  happens less than 10% of the time, despite sometimes rapid increases in 
Δt   



Test case: 3D, variable mobility 



Timestep build-up 

c/o Chao Yang, CAS 



Energy asymptotics 

c/o Chao Yang, CAS 



Strong scalability, BG/L 

c/o Chao Yang, CAS 



Strong scalability, BG/P 

c/o Xiao-Chuan Cai, CU-Boulder 

(now using BoomerAMG from hypre on the subdomains, 
for log-linear complexity subdomain solves) 



Phase field crystal (PFC) model  



“Movie” (1): Cahn-Hilliard (4th order) 



Movie (2): Phase field crystal (6th order) 



Phase separation, current status 
  Within an adaptive  nonlinearly stabilized 

timestepping scheme, standard Additive Schwarz 
leads to efficient massive parallelism, enabling phase 
separation problems to run to asymptotically long 
times  

  Better preconditioners are sought prior to turning the 
Cahn-Hilliard simulator loose in a vast physical 
parameter space to determine optimal designs of self-
assembling membranes 



Teams have become a “way to go” 
    Study of 20 million 

ISI papers since 
1955 and 2 million 
patents: 

  Papers by multiple 
authors more than twice 
as likely to be cited as solo 

  Teams are six times more 
likely to author “home run 
papers” (> 1000 citations) 

  Average team size grows 
by 20% per decade (over 
past five decades) 



Stories from the Audience? 



EOF!


