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In Memoriam
23 Jan 1924 — 17 July 1998

“James Lighthill was acknowledged
throughout the world as one of the great
mathematical scientists of this century. He
was the prototypical applied mathematician,
immersing himself thoroughly in the essence
and even the detail of every engineering,
physical, or biological problem he was
seeking to illuminate with mathematical
description, formulating a sequence of clear
mathematical problems and attacking them
with a formidable range of techniques
completely mastered, or adapted to the
particular need, or newly created for the
purpose, and then finally returning to the
original problem with understanding,
predictions, and advice for action.”

(from the David Crighton memorial in
AMS Notices)




Plan of series

Theme: role of mathematics in Computational Science
& Engineering, specifically large-scale simulation

Our philosophy will be to look at the scientific

opportunity of large-scale simulation from three

perspectives, concentrating one lecture on each
m Applications, Architectures, Algorithms

FSU Lighthill lectures are presumed neither cumulative
nor exclusive
m Individuals may attend any one without prerequisite
m Individuals invited to attend all three (Engineering,
Mathematics, Public)
This requires a modicum of audience patience for either
m Delegation (individual lectures not completely self-contained)

m Repetition (lectures have some overlap)



Purpose of the Engineering presentation

® Expose the structure of a large multidisciplinary CS&E
initiative
m SciDAC

m in its tenth year, hopefully to be continued by the 112t Congress

® Convey some of the fun of multidisciplinary
collaborations between applications and mathematics

® Signal some specific topics for further discussion during
the week



Outline of the Engineering presentation

Applied and computational mathematics in the U.S.
Scientific Discovery through Advanced Computing
program (SciDAC)

The cornerstone of many large-scale simulations: the
linear solver

Applications that have “broken” standard solvers, and led

to some advances (all remain “in progress”)
m Fusion (Off. of Fusion Energy Sciences)
m Ice sheet fracture (Off. of Biological and Environmental Sciences)
B Quantum chromodynamics (Off. of High Energy and Nuclear Physics)
m Phase separation (Off. of Basic Energy Sciences)

Summary and audience interaction



SCiDAC philosophy: common cyberinfrastructure

Many Enabling
applications technologies
drive > respond to all
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Required cyberinfrastructure
Model-related

Geometric modelers
Meshers
Discretizers
Partitioners

s Solvers / integrators

*
*

*
2

*

*

'

AdaptIvIly SyStems
Random no. generators
Subgridscale physics

Uncertainty
quantification

Dynamic load balancing | High-end computers come

Graphs and
combinatorial algs.

Compression

Development-related Production-related

*

*

Configuration systems

Source-to-source
translators

Compilers
Simulators
Messaging systems
Debuggers

Profilers

with little of this stuff.

Most has to be contributed

by the user community

*

Dynamic resource
management

Dynamic performance
optimization

Authenticators

I/O systems
Visualization systems
Workflow controllers
Frameworks

Data miners

Fault monitoring,
reporting, and recovery




Designing a simulation code —
the diagram that launched the SciDAC program

Nlathematical Model?

Applied Mathematics
(basic algorithms)

>

Computer Science
(systems software)

omputational Method?

High-
performance,
Validated
“Tool’ for
Scientific
Discovery

c/o T. Dunning, 2000



SCiDAC’s four computational math centers

® Interoperable Tools for Advanced Petascale Simulations (ITAPS)
PI: L. Freitag-Diachin, LLNL
For complex domain geometry

® Algorithmic and Software Framework for Partial Differential
Equations (APDEC)

PI: P. Colella, LBNL
For solution adaptivity

® Combinatorial Scientific Computing and Petascale Simulation
(CSCAPES)

PI: A. Pothen, Purdue U
For partitioning and ordering
® Towards Optimal Petascale Simulations (TOPS)
PI: D. Keyes, Columbia U (since 2009: E. Ng, LBNL)
For scalable solution

See: www.scidac.gov/math/math.html



The TOPS center spans 4 labs and S universities

Our mission: Enable scientists and engineers to take full advantage
of petascale hardware by overcoming the scalability bottlenecks
traditional solvers impose, and assist them to move beyond “one-

off” simulations to validation and optimization (~$32M/10 years)

Lawrence Livermore
National Laboratory

) o
Frereee M
- Towards Optimal Petascale Simulations

Sandia National Laboratories
@ J University of California 5 %, P,
%0g pu® Southern Methodist

Columbia University University of Colorado University of Texas University

—




adaptive
gridding,
Iscretization

software systems
technologies software,
component
; architecture,
performance

grid, engineering,
network data
technologies “.| management




TOPS has built a toolchain of solver components
that (increasingly) interoperate

® SciDAC project TOPS features these
trusted packages, whose principal functions
are keyed to the chart at the right:

hypre, PETSc,
SUNDIALS, SuperLU,
TAO, Trilinos, [PARPACK]

These are in use and actively debugged in
dozens of high-performance computing
environments, in dozens of applications
domains, by thousands of user groups
around the world

® TOPS maintains about Kalf of the software
presented at DOE’s ACTS toolkit tutorials

TAO, Tri SUN, Tri
Optimizer —» Sens. Analyzer

PET,
SUN, Tri

Time
integrator

1]
: : SLU, Tri

Eigensolver

PET, Tri *

solver

|
v

Linear

PET, hyp,
SLU, Tri

Indicates
dependence



In articles, proceedings, theses:

TOPS usage outside of SciDAC proper

In widely distributed software:

Astronomy
Biomechanics
Chemistry

Climate

Cognitive Sciences
Combustion
Economics

Electrical Engineering
Finance

Geosciences
Hydrodynamics
Materials Science
Mechanics

Medical
Micromechanics/Nanotechnology
Numerical Analysis
Optics

Porous Media

Shape Optimization

Cray LibSci®

deal.Il (2007 Wilkinson Prize)
Dspice

EMSolve

FEMLAB®

FIDAP®

GlobalArrays

HP Mathematical Library®
IMSL ®

libMesh

Magpar

Mathematica®

NAG ®

NIKE

Prometheus

SCIRun

SciPy

SLEPc

Snark

Thousands of groups around the world use TOPS software without directly collaborating
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1t’s all about solvers at large scale

® Given, for example:

m a “physics” phase that
scales as O(N)

m a “solver” phase that
scales as O(N*?)

m computation is almost all
solver after several
doublings

® Most applications groups
have not yet “felt” the
impact of this curve in
their gut
m as users actually get into
queues with more than

4K processors, this will
change

Weak scaling limit, assuming efficiency of
100% in both physics and solver phases

1.2

1

1 4 16

64
problem size

B Solver
E Physics

256 10

Solver takes
50% time on
128 procs

.

\

J

(

Solver takes
97% time on
128K procs

\_ J




Review: two definitions of scalability

@ “Strong scaling”

m execution time (7) decreases in
inverse proportion to the number
of processors (p)

m fixed size problem (N) overall

m often instead graphed as
reciprocal, “speedup”

® “Weak scaling” (memory
bound)

m execution time remains constant,
as problem size and processor
number are increased in
proportion

m fixed size problem per processor

m also known as “Gustafson scaling”

log T

Slope
=-1
/l/\C‘ ..,.. "n.p.-(?-(-)r
%
Vg
(?’71‘
good
log p
Slope - poor
............... N x p good
P



Solvers

scaling:

hypre’s algebraic multigrid (AMG) on BlueGene
® Algebraic multigrid a key algorithmic technology

m Discrete operator defined for finest grid by the application, itself, and for many
recursively derived levels with successively fewer degrees of freedom, for solver

purposes only

m Unlike geometric multigrid, AMG not restricted to problems with “natural”

coarsenings derived from grid alone

e Optimality (cost per cycle) intimately tied to the ability to

coarsen aggressively

® Convergence scalability (number of cycles) and parallel
efficiency also sensitive to rate of coarsening

® While much research and
development remains, multigrid
is practical at extreme
concurrency

Figure shows weak scaling result for AMG out to
120K processors, with one 25x25x25block per
processor (up to ~2B DOFs)

c/o U. M. Yang, LLNL

20

AMG total times A
—Au=f

. 5 15.6K dofs

2B dofs —4—Fal
——PMIS

0) 50000 100000

no. of procs

7-pt Laplacian, total execution time, AMG-CG, total problem size ~2 billion



Iterative correction:
a generator of scalable algorithms

® The most basic idea in iterative methods for Ax = b

x < x+ B (b- Ax)

@ Evaluate residual accurately, but solve approximately,
where B'is an approximate inverse to A

® A sequence of complementary solves can be used, e.g.,
with B, first and then 5, one has

x<—x+[B"' +B,' =B, AB'|(b - Ax)
@ Scale recurrence, e.g., with B '=R"(RAR")'R ,
leads to multilevel methods

® Characteristic choices of R lead to domain decomposition

e Optimal polynomials of (B ! A) lead to various
preconditioned Krylov methods



Multigrid treats each error component
in an appropriate subspace

Finest Grid

Restriction
transfer from fine
to coarse grid

coarser grid has fewer cells
(less work & storage)

Recursively apply this

A Multigrid V-cycle

First Coarse Grid

Prolongation
transfer from coarse

idea until we have an

easy problem to solve

c/o R. Falgout, LLNL

4 o fine grid




Domain decomposition puts off limitation of
Amdahl’s Law in weak scaling

rows assigned
to proc “2” AZ[ A22 A23

Partitioning of the grid induces

block structure on the system
matrix (Jacobian)
Computation scales with area;

communication scales with
perimeter; ratio fixed in weak
scaling




DD relevant to any local stencil formulation

finite differences finite elements finite volumes

:>!¢

* lead to sparse Jacobian matrices row 1

* however, the inverses are J—
generally dense; even the factors

suffer unacceptable fill-in in 3D

« want to solve in subdomains only,

and use to precondition full sparse

problem




Krylov-Schwarz:
a linear solver “workhorse”

Ax =b B 'Ax =B 'b

x= argmin {Av-b} B'=3.R/(RAR!)'R

VeV ={b,AbA%b -}

Schwarz
accelerator preconditioner
spectrally adaptive parallelizable




Krylov bases for sparse systems

e E.g., conjugate gradients (CG) for symmetric, positive definite
systems, and generalized minimal residual (GMRES) for
nonsymmetry or indefiniteness

® Krylov iteration is an algebraic projection method for converting
a high-dimensional linear system into a lower-dimensional linear
system

H=W"AV

g=WTb.=
Hy =
e




Schwarz domain decomposition method

Ri
® Consider restriction and extension &- Q.
operators for subdomains, R R/,
and for possible coarse grid, R , R,

® Replace discretized A4y = f with
B'Au=B""f
B'=RIA'R, + >, R,

® Solve by a Krylov method 4 = R ART

® Matrix-vector multiplies with =

m parallelism on each subdomain

m nearest-neighbor exchanges, global reductions
m possible small global system (not needed for parabolic case)



Remainder of the presentation

® Four vignettes A—
(malgematical ols)
i ] \ ¥ | [ oo

= Fusion o Compulond s | Parformance

V \/Compulalional Method? ( )
m Ice sheet fracture lodp L lo
m Quantum chromodynamics 4
m Phase separation & AR o)~ o g

® For each, a simple story
m Application encounters limitations with existing solver

m Interaction ensues between application scientist and TOPS
computational mathematics group

m Solutions are proposed, sometimes off-the-shelf, but usually in
prolonged co-development

m Application advances to next hurdle
m Solutions get added to the infrastructure



Application #1: MHD models of
magnetically confined fusion

ITER, an $11B multinational project
currently under construction

in Cadaraches, France, aims to
demonstrate magnetically confined
fusion by 2020; photo at right shows
tokamak pit at the far end of the
construction site.

Top-to-bottom exascale
computation is believed essential
for efficient design and operation

of large-scale experiments
—  Typical ITER discharge is estimated at $1M
—  US will get so many “shots” per month

—  Chief goal is to understand disruptions that

' . could plague a practical power generating
Contract for Vacuum Vessel signed 14 Oct 2010 device




MHD codes predict onset of instabilities critical to
ITER, and explore control scenarios

Edge Localized Modes

Heat loads during
disruption

“sawtooth oscillations”

£

Disruptions caused by short Mass redistribution Interaction of high-energy

wave-length modes interacting after pellet injection density particles with
with helical structures. global modes

c/o A. Koniges, LBNL



WARNING: The following two slides are
rated

for explicit equations.

No audience may look unless accompanied by
a mathematician or engineer.



MHD: Maxwell coupled to Navier-Stokes

0B Vector potential, A, gives the expansions
—=-VxE+«k
ot B=VxA,

A
E=’7'] EZ—VLP—%

Scalar potentials, U, f, y, and y, give the expansions (in

Upd =VxB (R, ®,7) coordinates):
a_”+v-(v)—() A =WV¢+RVf xV¢

Py = V=RVUxV¢+Vx+v RV
p((?t]+V VV)Vp+V voVV

n (aT

1l ar +V.VT) =_pV'V+V‘”[(X|| ‘XJ_)BB+)(J_I]°VT+Q



MHD in scalar potential form

a—Z=—IA*l—A*p+£VZZ... ) AL
ot - P A X = Z
A 1zenn'. AU =W

ot )

3 Vid=_.

P
oy = TTPL- V2f=-I/R

* A* = C

a—C =nA C+... v

ot

ow u

ad p VW +.. Each Time Step:

v, u v 3 coupled implicit time advance equations
o p Yo 3uncoupled implicit time advance equations

od 1 explicit time advance
o 5 elliptic solves..but all 2D



M3D-C": multigrid for optimality

® M3D code

m unstructured mesh, hybrid FE/FD
discretization with C° elements in
each poloidal crossplane

m linear systems (>90% exe. time)

® TOPS collaboration

m Replaced generic additive Schwarz
(ASM) preconditioner with three “00.
different solvers tuned to coefficient 0.

700 +

600 -

structure, including algebraic 300- m AMG FMGRES
multigrid (AMG) from hypre 2007
100 -
m achieved mesh-independent 0.

convergence rate

m ~Sx improvement in execution time



M3D-

code development

Existing M3D code
needed to be upgraded

Numerous discussions:
Math-CS-physics

Required new work 1n
all areas

* low order accuracy
not sufficient to
resolve multi-scale
phenomena (current
sheets)

* grid construction and
adaptation not optimal
for current sheets

* time-step restriction
too severe for slowly
growing modes

* 3D C’ high-order FE
allows fully implicit
compact system

* make use of ITAPS
mesh and adaptation
libraries and data
structure

* use TOPS block-
Jacobi preconditioner
that recognizes tight
point-block and looser
interplane couplings

c/o S. Jardin, PPPL

® Physics team
completely recodes
M3D using new
higher-continuity,
higher-order elements

* ITAPS makes many
extensions as needed
for periodic torus

* TOPS team adds new
capabilities as required

for preconditioner from
SuperLU




M3D-

Development went through four stages of increasing
complexity where useful results and critical benchmarking
were performed at each step

t=800

72D slab I:> 2D torus I:> 3D L torus I:> 3D NL torus

E
k::sf&"sif.t’:f{:'?i-'‘
ot B 572850 4 T L EE!
Two-fluid Two-fluid Linear study Nonlinear
magnetic tokamak of edge internal
reconnection equilibrium localized reconnection
in model with flow modes 1n event in

geometry included tokamak tokamak



Close-up of the resolution of edge-localized
modes

Typical 3D C” wedge element obtained
by tensoring 2D basis with Hermites in
the toroidal direction.

—

25 30 3f
Rim)




Fusion simulation: current status

@ FKFusion group has a toolkit of linear solvers to call

dynamically from the command line (PETSc)

field-by-field scalar elliptic and time-implicit solvers
point-blocked solvers for tighter coupling of fields

direct sparse solver with fill-minimizing ordering (SuperLU) for 2D
poloidal planes and other aggregates

algebraic multigrid solvers
additive Schwarz extensions to precondition 3D problems

Krylov accelerators

® Current solver allows physicists to move about on a spectrum

from robustness to optimality, with orders of magnitude

runtime improvements over the robust default of direct

sparse solves, at relevant contemporary granularities



Application #2: fracture in ice sheets

® Ice sheets sitting on Greenland and Antarctica keep 77% of the world’s
freshwater locked up “high and dry”

® Average thickness 2.1 Kilometers; now cover 10% of Earth’s land area

If all the fresh water land-locked in ice sheets and glaciers were to melt, it
would cause a sea level rise of nearly 80 meters

® In the last century, sea levels

: : : . . — 35 .
. have risen about (0.2 meters
. Recent Sea Level Rise 130 .
23 Annual Tide Gauge Records —~ @ On 6 Aug 2010, a piece of the
= Three Year Average | 255 Greenland ice sheet 4X the size
== Satellite Altimetry | ‘. L d200

of Manhattan fell into the sea

® Primary mechanism for losses:
= sliding off land
= calving at overhanging shelves

= accelerated by fracture

® Climate models currently lack

c/o Wikipedia Commons

1880 1900 1920 1940 1960 1980 2000 these dynamics




Ice sheet (on land)
VSs.
ice shelf (over sea)

Precipitation

Y/
v

Sea ice /

CONTINENTAL
SHELF

c/o Wikipedia Commons

o, PACIFIC

Anetunm »
DISINTEGRATION OF ANTARCTIC.A S
-\ LARSEN ICE SHELF fh} &
QHLE 3 I g - Mlﬂb /

‘- ATLANTIC _lsbnd IS
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%, < = l-/{, &
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3 W ] Exi
Ia?: %4@ Existing ice shelf as of July 2002
| ] WESTANTARCTICA $ Larsen Ice Shelf losses
% [:] January 1995
! \‘%)V r - January 1995-January 2002
e ’ | I February-March 2002
\ EAST ‘
ANTARCTICA

INDIAN | OCEAN

\Qe

0 400 800 mi
600 1200 km

c/o"Rﬂ‘”Ngjtter Encyelopedla Brltar\nlca,,om,,‘,,,:,,p,,‘,,,,,,,,,,,,,,ca e/




Ice sheet/shelf modeling:
start with linear elasticity

~ _lce sheet

Grounding Ice shelf
line .

 Better to add new
degrees of freedom
rather than new mesh
points?

* Have just received
some ice sheet geometry
data from the field; this
talk is preliminary to
the real application and
1s limited to 2D

c/o H. Waisman, Columbia University

* Cracks can be homogenized into
the stress-strain constitutive
relationship with a “damage”
assumption, or they can be
explicitly treated

* However, explicit transient
Lagrangian remeshing can be

_ . complex



Components of our computational model

Extended finite elements (XFEM)

m XFEM developed in 1999 by Belytschko et al. at Northwestern to extend
finite elements to problems with cracks (or other discontinuities) without
slavish remeshing

m Here, it is applied to brittle fracture

Algebraic multigrid (AMG) solvers based on smoothed
aggregation prolongators

m SA-AMG developed in 1996 by Vanek ef al. at Denver to build operator
information into the coarsening strategy

Domain decomposition (DD) to isolate the extra DOFs of XFEM
in a small problem

m Of the three main reasons for DD: (1) isolate different physics in different
computational regimes, (2) achieving near-optimal sequential
computational complexity, (3) scaling implicit finite element solvers to
massively parallel computers, we are most closely related to the first, with
a twist: isolating different discretizations



Computational modeling of fracture

Classical FEM approach to fracture:

e Mesh conforms to crack boundaries

* Crack propagation requires remeshing at
each step

Requires double-nodes for crack opening and
fine mesh for tip singularities

XFEM approach:

* Base mesh independent of crack geometry

* Crack propagation requires adding
“enriched” DOF with special basis
functions to existing nodes

Crack geometry defined through intersections
of two levelset functions (for each crack),
normal and tangential

Discontinuities and singularities captured
through special basis functions (enrichments)

Enrichments have local support

XFEM mesh

Stresses in y direction when bottom
edge fixed and uniform traction
applied on top edge in y direction




XFEM: employ regular elements and add degrees
of freedom to parameterize the crack(s)

Single crack in 2D, zoom Multiple cracks in 2D
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o Crack DOFs: 0.1
Heaviside functions

‘ I}
0.1 0.2 03 0.4 0.5 06 07 0.8 0.9 1

The number of extended DOFs
01 Crack-tip DOFs: should be relatively “small” but
analytical singularities can still be algebraically
significant, worse in 3D



XFEM for fracture

Reg DOFs Line DOFs Tip DOFs
XFEM Discrete ) nh ny
u't(x N + Ny ( 7+ Ny Fj(x)b
model: wHx) = s 1(x)ur Z (X)ay ; Z J(X)br s
(Belytschko et al. 1999) o -
B H(x) = { 1 above I'o4+ '
—1 below I'.—
Enrichment
. The Fj(x) are given in local polar coordinates (r, ) as
functions: -
( Jfl JfQ J:\,} Jf
0 0
Fj(r,6) =4 fsm( ) \f(os( > V1 sin 3> sin(#), \/r cos <3 sin (6
XFEM element
. . A€ :/ (anr) DB;ndQe
stiffness matrix: 0.
. - Good methods
XFEM linear @ oy ( exist for the red

system
after assembly:

AZB’I" wiB

= Ir block, €.g., AMG
Ja



Schwarz approach builds preconditioner out of
ambient “healthy” piece and local crack pieces

Overlapping elements Overlapping elements



Structure of the block

XFEM Linear System:

— — — — p— —_

"_l rTr "_l rr U'I f T

— — — — — —

* Enriched DOF
grouped together at
the end 1n u,

* 4, small
compared to 4, for
relatively small
number of cracks

* Dense blocks 1n 4
correspond to tip
functions

XFEM mesh

Sparsity pattern of 4 Sparsity pattern of 4.,




Cracks embedded with random angle
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Brute-force AMG poor on the overall system
but handles the A piece, with LU/ILU on the

Schwarz blocks of the A

+ AMG brute force

—il— Additive Schwarz-AMG multiple
—A— Additive Schwarz-AMG gathered
—l— Multiplicative Schwarz-AMG multiple
—&— Multiplicative Schwarz-AMG gathered |

1072

107 [
.\Vv “

(=]

_ 10 , “\!’\

S \ —l— Exact Schwarz multiple

'?, 107 ‘ \ —A— Exact Schwarz gathered

o J |

g -

5 107°} .

£

S 12 \

2 107" .
107 -
107" | | | | | | | | |

0 20 40 60 80 100 120 140 160 180 200

Number of iterations

c/o L. Berger-Vergiat, Columbia University



Quasi-AMG

Aggregates form the “coarse” nodes on the next level

Aggregates should respect crack boundaries; otherwise,
coarsening couples across cracks

Break the graph edges in 4 corresponding to couplings
across the crack interfaces using levelset information

. Results in aggregates that respect crack boundarles

F o ENNEET RN NN RN RN
BE R H R

ot
FhE

o R -
R e R
+Jr++¢¢1+++++++++++-gg

After
Each color represents one aggregate at the coarse level



Test cases

* Both edge cracks and interior cracks are considered
* For each crack-configuration, following mesh densities are

considered
o0 30x30
o 60 x 60
090 x90
o 120 x 120 Single Propagating Crack Two Cracks
(a) Case 1a (b) Case 1b (c) Case 1c (d) Case 2a (e) Case 2b

Six Cracks Inclined Cracks

(f) Case 3a (g) Case 3b (h) Case 4 (i) Case 5a (j) Case 5b



Numerical results

Case VBlk Hybrid Quasi Mesh Case VBlk Hybrid Quasi
AMG Standard | AMG AMG Standard | AMG
AMG N AMG N
28 13 / T 302 154 - 16
i 29 15 , 10 602 90 127 - 14
37 17 12 902 - - 25
37 19 12 1202 - - 21
24 22 11 302 - - 18
24 29 12 602 - - 21
1b 36 35 14 902 3b - - 28
35 11 13 1202 - - 22
31 31 13 302 116 107 15
e 32 43 14 603 p 102 154 21
A7 53 16 902 142 190 23
45 61 15 1202 151 - 22
64 57 15 302 80 76 12
‘ 52 80 14 602 _ 91 107 13
2a 87 08 20 902 o 124 131 15
92 113 18 1202 140 151 15
73 59 16 302 89 81 16
o 72 81 \ 17 602 ‘L 103 116 15
97 104 21 902 ' 134 143 17
95 122 \19 1202 151 165 1

c/o R. Tuminaro, Sandia




Remark on coarsening

17640 x 17640 4206 x 4206
D T T T T T T T T o i |
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Currently, only regular DOFs are currently coarsened. This
works well when there are few cracks, but limits scalability for
problems with many cracks. We are currently considering
special coarsening of some enrichment functions.



Ice-sheet modeling: current status

Straightforward Schwarz approach to employ AMG
in XFEM by avoiding the irregular blocks of the
enriched degrees of freedom

@ Uses only blackbox solvers

® Crack-sensitive prolongator for AMG is yet further

superior

m Current AMG solver coarses “healthy” domains, but
preserves extended degrees of freedom, resulting in increasing
relative size of extended DOFs at coarser levels

Challenge looms in 3D, where extended DOFs live on
2D crack surfaces



Application #3: Quantum
Chromodynamics

QCD is the theory of strong g8 mumunEERAAREEL =S - ! : JI[ HITTT
forces in the Standard ' ] T
Model of particle physics. It
Describes the structure of
nucleons, which are made
up of quarks interacting in a
gluon field.

The lattice is typically 4- or
S-dimensional, and the fields
consist of 12 components at
each node. The gluon field
mixes the components
through unitary matrix
coefficients on each edge.

The regularity of the mesh and the high resolution required has long suggested
multigrid to physicists, but prior to SciDAC, achievements were limited.
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\ 3x3 color gauge /

4x4 sparse spin matrices:  matrices X, = (X1,X2,X3,%4)
4 non-zero entries 1,-1, i, -i / (space,time)
/ |

On a Hypercubic Lattice (x, = integer, a = lattice
spacing):

::’y,ul —1 / \
> 5 U@, ztp)v(atp)+(am+4)p(z) = b(z)
+u \

3x3 Unitary : U(x,x+u) = expli a A (x)] and U(x,x-u) = U'(x-u,X)

c/o R. Brower, Boston University



Scalable solvers for the Dirac equations
in QCD have been elusive until now

@ Challenges in solving the Dirac equations
m System is complex and indefinite
m System can be extremely ill-conditioned
m Near null space is unknown and oscillatory

Two-dimensional model problem for the a scalar complex field,
showing an “instanton”, or a null-space mode of the Dirac operator




The importance of the near null space

Multigrid (MG) methods are based on
knowledge of the near null space

m For the Laplacian, these are the smoothest
modes and are well approximated

geometrically
m Generally, for indefinite (oscillatory)
problems, smooth modes are irrelevant "'Eﬁi
Algebraic Multigrid (AMG) uses matrix GI
coefficients e
= Automatically coarsens “grids”
Error left by relaxation is algebraically '_

smooth SRR R H

Coarsening must interpolate small AMG coarsens grids
in the direction of

eigenmodes well geometric smoothness



Adaptive smoothed aggregation (0SA)
automatically builds the coarse space

® Generate the basis one vector at a time
m Start with relaxation on Au=0 2> u, 2> aSA(u,)
m Use aSA(u,) on Au=0 > u, 2> aSA(u,u,)
m Iterate until we have a good coarse basis

@ Setup is expensive, but is amortized over many
right-hand sides
® Published in 2004 by SciDAC TOPS team

O Brezma, Falgout, MacLachlan, Manteuffel McCormick, and Ruge,
“Adaptive smoothed aggregation (0:SA),” SIAMJ Sci. Comput (2004)

® Demonstrated in 2D QED in 2005

m Brannick, Brezina, Keyes, Livne, leshlts, MacLachlan, Manteuffel,

McCormlck; Ruge, and Zikatanov, “Adaptive smoothed aggregation in
lattice QCD, " Springer (2006)

® Subsequently migrated to realistic models



4D Wilson-Dirac Results
aSA-MG shows no slowing down
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e Parameters: N=163x32, $=6.0, m_,;, = -0.8049

e MG Parameters: 44x3x2 blocking, 3 levels, W(2,2,4) cycle, N, = 20,
setup run at m_;

c/o R. Brower, Boston University
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4D Wilson-Dirac outpaces competition

at

all quark masses
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QCD Dirac solves: current status

® Adaptive Smoothed Aggregation Algebraic Multigrid
is expensive to use just once due to set up costs, but in
QCD applications, where the same gluon coefficient
field is used tens to hundreds of times on different
right-hand sides, it is a paradigm shifter

® The superiority of the method increases with the
resolution of the problem and the approach of quark
mass to physically realistic values

e Complicated algorithm, with data-dependent sparsity
is challenging to encode as efficiently as brute-force
methods, but this is now underway — even on GPUs



Application #4: Modeling phase separation
with Cahn-Hilliard

c/o K.-V. Peinemann, KAUST
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Spinodal decomposition
(Cahn & Hilliard, J. Chem. Phys. 1958)

time = 8 8580+05 (min= -1 max= 1)

tme = 0. 01833 (min

X
time = 0. 0002756 (min =

- - . Stationary state: very
long term evolution
. F .
imes= O(mins=-08

Coarsening: slowly develop
grain structures

Phase separation: fast develop
into two distinguished phases
Quenching: lower the
temperature suddeni

c/o Chao Yang, CAS



Sharp (Lagrangian) vs. diffuse (Eulerian) models

Sharp-interface models Diffuse-interface models

lnte\};face [nterface

5
L

Variable
Field variable

Distance Distance

e Discontinuous e Continuous

e EXplicit interface-tracking e Interfaces implicitly included

e Simplified grain morphologies e Complex grain morphologies




General form of Cahn-Hilliard model

Bu dE(u)
ot~V MWV—p

0

e Domain: x€[0,1]4,d=1,2,3,t>0
e u(x,t) € [—1,1]: concentration difference of a binary mixture
e M(u) > 0: mobility
e E(u) = E¢(u) + E*(u): Ginzburg-Landau free energy
o E°(u) = [o W(u)dx: chemical energy (or bulk energy)

o E'(u) = foglvude: interfacial energy

o 0 < e << 1: interfacial sharpness parameter

The C-H equation: ‘Zt—“ 4+ 2V - M(u)VAu -V - M(uw)VW/(u) =0

o Boundary conditions

* Periodic
ou O0Au

* Neumann: = =0
Ov ov




Parameterizations

® Case 1:ideal
o Quartic chemical potential (double well):
1
W(uw) = =(1 — u?)?
4
o Constant mobility:

M(u)=1

® Case 2: realistic
o Logarithmic chemical potential:

W(w) = ; (1 +w)n(1+u) + 1 —w)In(1 - u) - u?)
The constant 8 > 1: quench ratio (Tiritical/Tabsolute)
o Thermodynamically consistent mobility:

M(u) = 1(1 —u?)



Time discretization (1)

Discretize u; ;(t) with ug; = u; j(tn) and put in a vector U™.

0
The C-H equation: E"' + 2V . M(u)VAu — V - M(w)VW!(u) = 0.
Denote A and A™ as the discrete operators of —A and —V - M(U™)V.

e Forward Euler: suffers severely from stability limit
Un+1 —_yn
At

+2ATAUH+ AW (U™) = 0. (Euler)

e Semi-implicit: also suffers from stability limit
Un+1 —_pyn

N, teATT AU ATWI(UT) = 0. (SI)

e Fully implicit backward Euler: typically At < O(e2), Copettio2'NM
Un+1 —_pyn
At

42 At guntly Antly/(untl) = o. (B-Euler)



Stability through energy splitting
® The numerical scheme should discretely obey energy decay

gurth <gwn), n=1,2.23,..

e Energy splitting (Eyre’98, He’07, Shen’10) breaks energy
into a convex and a concave part

m Keep convex on the LHS (implicit), where it enhances
definiteness

m Keep concave on the RHS (explicit), lest it oppose
definiteness



Time discretization (2)

® Case 2: realistic (variable mobility)
The C-H eq.

Z_‘: + 2V . M(w)VAu+ 0V - M(w)Vu — (1/4)Au =0

The free energy

E = %/Q (62|Vu|2 +Q4+w)nA4+2)+@—-w)In(l—u) - 6u2) dx

Nonlinearly stabilized (NS) scheme

o The splitting
7,

Er=— [ u?dx, Ey=E-E
2 2Qu 1 2

o The NS scheme
Un+1 —_yn
At

+ 2 ATl Auntl — (1/4) AU 4 9 AU =0



Time discretization (3)

The rate of evolution of the interface varies enormously,
becoming extremely slow near minimum surface area
equilibrium

A main interest is to get stably to long-term configuration

Use “Switched Evolution-Relaxation” (SER) of Mulder &
Van Leer (1985)

m build up time step in inverse proportion to some fractional power of
steady-state residual decrease

m subject to maximum increase and minimum decrease ratio
Initially, 47 = O(&?)

Robustification feature

m if Newton diverges, recursively halve the timestep

m happens less than 10% of the time, despite sometimes rapid increases in
At



Test case: 3D, variable mobility
The C-H equation

gt_“ + €2V - M(u)VAu + 0V - M(u)Vu — (1/4)Au =0

Coefficients: 6 = 3/2, €2 = 1/800

Initial conditions: ug = 0.26 4+ 0.05 *xrand(—1,1)
Boundary conditions: periodic

Time integration: Backward Euler and NS schemes
Time step size Atg = 8 x 10> with adaptive At

c.f. Gomez, Calo, Bazilevs and Hughes 2008 CMAME



Timestep build-up
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Energy asymptotics
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Strong scalability, BG/L

e LU subdomain solves, RAS with § =2, At=8x 10>

Newton GMRES

Mesh  np Time (sec)
At Newton - At

643 256 2.1 3.6 223.6

643 512 2.1 3.7 86.5

643 1024 2.1 3.8 37.8

Mesh np NEWEON GMRES Time (sec)
At Newton - At

1283 1024 2.1 6.6 656.4

1283 2048 2.1 6.7 247.6

1283 4096 2.1 7.3 95.6

e ILU(3) subdomain solves, RAS with § =2, At=1.25x 107>

Newton GMRES

Time (sec)
At Newton - At

Mesh np

2563 8192 2.1 13.4 36.51

c/o Chao Yang, CAS



Strong scalability, BG/P
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e T he one-level RAS scales well up to 32K processors in terms of iteration numbers
e LU subdomain solver provides superlinear speedup, though the compute time is large

e ILU subdomain solver are faster but the speedup is no longer superlinear
e A trade-off between LU and ILU, or other sequential solver, is needed in real applications

(now using BoomerAMG from hypre on the subdomains,
for log-linear complexity subdomain solves)

c/o Xiao-Chuan Cai, CU-Boulder



Phase field crystal (PFC) model

e Free energy

E(u) = /

la,1=mo o o2,1 2
(Fut+ =5 2 = [Vul? + S (Aw)?)

e Conserved dynamics: phase field crystal (PFC) equation

il
ot

A<5E('u,) _

du

0

\au

" | ot

—A3u—-2A%u—ARP+ 1 -n)u]l =0




“Movie” (1): Cahn-Hilliard (4™ order)



Movie (2): Phase field crystal (6" order)



Phase separation, current status

e Within an adaptive nonlinearly stabilized
timestepping scheme, standard Additive Schwarz
leads to efficient massive parallelism, enabling phase
separation problems to run to asymptotically long
times

® Better preconditioners are sought prior to turning the
Cahn-Hilliard simulator loose in a vast physical
parameter space to determine optimal designs of self-
assembling membranes



Teams have become a “way to go”

The Increasing Dominance of
Teams in Production of Knowledge

Stefan Wuchty,™* Benjamin F. Jones,?* Brian Uzzil'z"r

We have used 19.9 million papers over 5 decades and 2.1 million patents to demonstrate that teams
increasingly dominate solo authors in the production of knowledge. Research is increasingly done in
teams across nearly all fields. Teams typically produce more frequently cGted research than individuals
do, and this advantage has been increasing over time. Teams now also produce the exceptionally high-
impact research, even where that distinction was once the domain of solo authors. These results are
detailed for sciences and engineering, social sciences, arts and humanities, and patents, suggesting that
the process of knowledge creation has fundamentally changed.

n acclaimed tradition in the history and
sociology of science emphasizes the role
of the individual genius in scientific dis-
covery (1, 2). This tradition focuses on guiding
contributions of solitary authors, such as Newton
and Einstein, and can be seen broadly in the tend-
ency to equate great ideas with particular names,
such as the Heisenberg uncertainty principle, Eu-
clidean geometry, Nash equilibrium, and Kantian
ethics. The role of individual contributions is also
celebrated through science'’s award-granting in-
stitutions, like the Nobel Prize Foundation (3).
Several studies, however, have explored an
apparent shift in science from this individual-
based model of scientific advance to a teamwork
model. Building on classic work by Zuckerman
and Merton, many authors have established a
rising propensity for teamwork in samples of
research fields, with some studies going back a
century (4-7). For example, de Solla Price ex-
amined the change in team size in chemistry from
1910 to 1960, forecasting that in 1980 zero per-
cent of the papers would be written by solo au-

"Northwestern Institute on Complexity (NICO), North-
western University, Evanston, IL 60208, USA. “Kellogg
School of Management, Northwestern University, Evanston,
IL 60208, USA.

*These authors contributed equally to this work.
1To whom correspondence should be addressed. E-mail:
uzzi@northwestern.edu

thors (). Recently, Adams er al. established that
over time, teamwork had increased across
broader sets of fields among elite U.S. research
universities (9). Nevertheless, the breadth and
depth of this projected shift in manpower remains
indefinite, particularly in fields where the size of
experiments and capital investments remain
small, raising the question as to whether the
projected growth in teams is universal or
cloistered in specialized fields.

A shift toward teams also raises new ques-
tions of whether teams produce better science.
Teams may bring greater collective knowledge
and effort, but they are known to experience so-
cial network and coordination losses that make

them underperform individuals even in highly
complex tasks (/0-/2), as F. Scott Fitzgerald
concisely observed when he stated that *no grand
idea was ever born in a conference” (/3). From
this viewpoint, a shift to teamwork may be a
costly phenomenon or one that promotes low-
impact science, whereas the highest-impact ideas
remain the domain of great minds working alone.

We studied 19.9 million research articles in
the Institute for Scientific Information (ISI) Web
of Science database and an additional 2.1 million
patent records. The Web of Science data covers
research publications in science and engineering
since 1955, social sciences since 1956, and arts
and humanities since 1975. The patent data cover
all U.S. registered patents since 1975 (/4). A team
was defined as having more than one listed author
(publications) or inventor (patents). Following the
1SI classification system, the universe of scientific
publications is divided into three main branches
and their constituent subfields: science and
engineering (with 171 subfields), social sciences
(with 54 subfields), and arts and humanities (with
27 subfields). The universe of U.S. patents was
treated as a separate category (with 36 subfields).
See the Supporting Online Material (SOM) text
for details on these classifications.

For science and engineering, social sciences,
and patents, there has been a substantial shift
toward collective research. In the sciences, team
size has grown steadily each year and nearly

Table 1. Patterns by subfield. For the three broad ISI categories and for patents, we counted the
number (V) and percentage (%) of subfields that show (i) larger team sizes in the last 5 years
compared to the first 5 years and (ii) RTI measures larger than 1 in the last 5 years. We show RTI
measures both with and without self-citations removed in calculating the citations received. Dash

entries indicate data not applicable.

Increasing RTI>1 RTI>1
team size (with self-citations) (no self-citations)
Nriowss  Niiess % Neetas % Niets %
Science and engineering 171 170 99.4 167 97.7 159 92.4
Social sciences 54 54 100.0 54 100.0 51 94.4
Arts and humanities 27 24 88.9 23 85.2 18 66.7
Patents 36 36 100.0 32 88.9 - -

18 MAY 2007 VOL 316 SCIENCE www.sciencemag.org

Study of 20 million
ISI papers since
1955 and 2 million

patents:

Papers by multiple
authors more than twice
as likely to be cited as solo

Teams are six times more
likely to author “home run
papers” (> 1000 citations)

Average team size grows
by 20% per decade (over
past five decades)



Stories from the Audience?
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