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A nonlinearly implicit 
manifesto 



In Memoriam 
23 Jan 1924 – 17 July 1998  
“James Lighthill was acknowledged 
throughout the world as one of the great 
mathematical scientists of this century. He 
was the prototypical applied mathematician, 
immersing himself thoroughly in the essence 
and even the detail of every engineering, 
physical, or biological problem he was 
seeking to illuminate with mathematical 
description, formulating a sequence of clear 
mathematical problems and attacking them 
with a formidable range of techniques 
completely mastered, or adapted to the 
particular need, or newly created for the 
purpose, and then finally returning to the 
original problem with understanding, 
predictions, and advice for action.”  
 
(from the David Crighton bio in  
AMS Notices) 



Plan of series 
  Theme: role of mathematics in Computational Science 

& Engineering, specifically large-scale simulation 
  Our philosophy has been to look at the scientific 

opportunity of large-scale simulation from three 
perspectives, concentrating one lecture on each 
  Applications, Architectures, Algorithms 

  FSU Lighthill lectures are presumed neither cumulative 
nor exclusive 
  Individuals may attend any one without prerequisite 
  Individuals invited to attend all three (Engineering, 

Mathematics, Public) 

  This requires a modicum of audience patience for either 
  Delegation (individual lectures not completely self-contained) 
  Repetition (lectures have some overlap) 



Plan of mathematics presentation 
  Motivations for implicit solvers 

  trends: multi-scale, multi-physics, multi-solve (sensitivity, stability, 
uncertainty quantification, design, control, inversion) 

  understanding: one-dimensional model problems, linear and 
nonlinear 

  State-of-the-art for large-scale nonlinearly implicit 
solvers (at least in the DOE J) 
  brief look at algorithmic prototype: Newton-Krylov-Schwarz 
  intuition about how it scales (up to the petascale, at least) 

  Illustration: “stories from the trenches” 
  an undergraduate semester project “gone Broadway” 
  community code simulations supporting international magnetically 

confined fusion energy program (ITER reactor) 



Going implicit? 
  Why we would, if we could : 

1.  multiscale problems with good scale separation 
2.  coupled problems (“multiphysics”) 
3.  problems with uncertain or controllable inputs 

(optimization: design, control, inversion) 

  We can, so we should ! 
1.  optimal and scalable algorithms known 
2.  freely available software 
3.  reasonable learning curve that harvests legacy 

code 



Current focus on Jacobian-free implicit methods 

  Two stories to track in 
supercomputing 
  raise the peak capability 
  lower the entry threshold 

higher capability 
 for hero users 

best practices 
 for all users 

  Jacobian a steep price, 
in terms of coding 
  very valuable to have, but 

not necessary 
  approximations thereto 

often sufficient 
  meanwhile, automatic 

differentiation tools are 
lowering the threshold 

Tianhe 1A        
(#1 on the 
Top 500) 

first frontier 

“new” frontier 



Recent “E3” report highlights 
limitations of explicit methods 

“The dominant computational 
solution strategy over the past 30 
years has been the use of first-
order-accurate operator-splitting, 
semi-implicit and explicit time 
integration methods, and decoupled 
nonlinear solution strategies. Such 
methods have not provided the 
stability properties needed to 
perform accurate simulations over 
the dynamical time-scales of 
interest. Moreover, in most cases, 
numerical errors and means for 
controlling such errors are 
understood heuristically at best.” 



Recent E3 report highlights 
opportunities for implicit methods 

“Research in linear and nonlinear 
solvers remains a critical focus 
area because the solvers provide 
the foundation for more advanced 
solution methods. In fact, as 
modeling becomes more 
sophisticated to include, 
increasingly, optimization, 
uncertainty quantification, 
perturbation analysis, and more, 
the speed and robustness of the 
linear and nonlinear solvers will 
directly determine the scope of 
feasible problems to be solved.” 

�



Many of the eight new “extreme scale” reports 
identifies implicitness as a priority* 

“The following priority research 
direction [was] identified: develop 
scalable algorithms for non-
hydrostatic atmospheric dynamics 
with quasi-uniform grids, 
implicit formulations, and adaptive 
and multiscale and multiphysics 
coupling… Improvements in 
scalability alone will not be 
sufficient to obtain the needed 
throughput (the time it takes to 
complete a climate simulation). 
Obtaining the needed level of 
throughput will also require 
incorporating as much implicitness 
as possible …” 2009 

*Extreme scale fusion report is even more forceful 



“Explicit” versus “implicit” 
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  Implicit methods solve a 
function of state data at the 
current time, to update all 
components simultaneously 
  equivalent to inverting a 

matrix, in linear problems 
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  Explicit methods evaluate a 
function of state data at 
prior time, to update each 
component of the current 
state independently 
  equivalent to matrix-vector 

multiplication, in linear 
problems 



Explicit methods can be unstable – 
 linear example 
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Stable 
for all ν 

Unstable 
for ν>1/2 

c/o K. Morton & D. Mayers, 2005 

initial 
data 

after 1 
step 

after 25 
steps 

after 50 
steps 

Δt = 0.0012 Δt = 0.0013 



Explicit methods can be unphysically oscillatory – 
 nonlinear example (“profile stiffness”) 
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Linearly implicit, nonlinearly 
explicit: 
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Linearly and nonlinearly implicit: 

history at station 10 

history at station 10 
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Oscillatory 

Non-
oscillatory 



Timesteps for equivalent accuracy –  
GLF23 with gradient-dependent diffusivity 

Example from fusion collaboration: for sufficiently small timestep, the nonlinearly 
implicit and linearly implicit with lagged diffusivity converge on the same result, but 
the nonlinear implicit permits timesteps 104 times larger with same accuracy  

c/o Steve Jardin, PPPL 



However – 
implicit methods can be unruly and expensive 

Explicit  Naïve Implicit 

Reliability robust when stable uncertain 

Performance predictable data-dependent 

Concurrency O(N) limited 

Synchronization once per step many times per step 

Communication nearest neighbor* global, in principle 

Workspace O(N) O(N w), e.g., w=5/3 

Complexity O(N) O(N c), e.g., c=7/3 

* plus the estimation of the stable step size 



Motivation #1:  
Many simulation opportunities are multiscale 
  Multiple spatial scales 

  interfaces, fronts, layers 
  thin relative to domain 

size, δ << L 
  Multiple temporal scales 

  fast waves 
  small transit times 

relative to convection or 
diffusion, τ << T 

  Analyst must isolate dynamics of interest and model the rest in a 
system that can be discretized over more modest range of scales 

  Often involves filtering of high frequency modes, quasi-
equilibrium assumptions, etc. 

  May lead to infinitely “stiff” subsystem requiring implicit 
treatment 

Richtmeyer-Meshkov instability, c/o A. Mirin, LLNL 



Examples of scale-separated features  
of multiscale problems 

  Gravity surface waves in global climate 
  Alfvén waves in tokamaks 
  Acoustic waves in aerodynamics 
  Fast transients in detailed kinetics chemical 

reaction 
  Bond vibrations in protein folding (?) 

Explicit methods are restricted to marching out the long-scale dynamics 
on short scales.  Implicit methods can “step over” or “filter out” with 
equilibrium assumptions the dynamically irrelevant short scales, 
ignoring stability bounds. (Accuracy bounds must still be satisfied; for 
long time steps, one can use high-order temporal integration schemes!) 



IBM’s BlueGene/P: 72K 
quad-core procs w/ 2 
FMADD @ 850 MHz              
= 1.003 Pflop/s 

13.6 GF/s 
8 MB EDRAM 

4 processors 

1 chip 

13.6 GF/s 
2 GB DDRAM 

�
32 compute cards 

435 GF/s 
64 GB  

32 node cards 

72 racks 

1 PF/s 
144 TB  

Rack 

System 

Node Card 

Compute Card 

Chip 

14 TF/s 
2 TB  

Thread concurrency:        
288K (or 294,912) processors 

Forschungszentrum 
Jeulich  

(#9 on Top 500) 

What’s “big iron” for, if not multiscale? 



Review: two definitions of scalability 
  “Strong scaling” 

  execution time (T) decreases in 
inverse proportion to the number 
of processors (p) 

  fixed size problem (N) overall 
  often instead graphed as 

reciprocal, “speedup” 

  “Weak scaling” (memory 
bound) 
  execution time remains constant, 

as problem size and processor 
number are increased in 
proportion 

  fixed size problem per processor 
  also known as “Gustafson scaling” 

T   

p 

good 

poor 

poor 

N ∝ p 

log T 

log p 
good 

Slope
= -1 

Slope
= 0 



 �
  Algebraic multigrid a key algorithmic technology 

  Discrete operator defined for finest grid by the application, itself, and for many 
recursively derived levels with successively fewer degrees of freedom, for solver 
purposes 

  Unlike geometric multigrid, AMG not restricted to problems with “natural” 
coarsenings derived from grid alone 

  Optimality (cost per cycle) intimately tied to the ability to 
coarsen aggressively 

  Convergence scalability (number of cycles) and parallel 
efficiency also sensitive to rate of coarsening 

�

Solvers are scaling: 
algebraic multigrid (AMG) on BG/L (hypre) 

Figure shows weak scaling result for AMG out to 
120K processors, with one 25×25×25block per 
processor (up to 1.875B dofs)  procs 

  While much research and 
development remains, multigrid 
will clearly be practical at BG/
P-scale concurrency 
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c/o U. M. Yang, LLNL 



Explicit methods do not weak scale! 
  Illustrate for CFL-limited 

explicit time stepping* 
  Parallel wall clock time 

�

ddPST //1 αα+∝

d-dimensional domain, length scale L 
d+1-dimensional space-time, time scale T  
h computational mesh cell size 
τ computational time step size  
τ=O(hα) stability bound on time step 
n=L/h number of mesh cells in each dim 
N=nd number of mesh cells overall 
M=T/τ number of time steps overall 
O(N) total work to perform one time step 
O(MN) total work to solve problem 
P number of processors 
S storage per processor 
PS total storage on all processors (=N) 
O(MN/P) parallel wall clock time 
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d  
(since τ ∝ hα ∝ 1/nα  = 1/Nα/d  = 1/(PS)α/d ) 
�

3 months 10 days 1 day Exe. time 

105×105×105 104×104×104 103× 103×103 Domain 

  Example: explicit wave 
problem in 3D (α=1, d=3) 

�

27 years 3 months 1 day Exe. time 

105× 105 104× 104 103× 103 Domain 

  Example: explicit diffusion 
problem in 2D (α=2, d=2) 

�

      *assuming dynamics needs to 
be followed only on coarse scales 

“blackboard” 



  Interfacial coupling 
  Ocean-atmosphere 

coupling in climate 
  Core-edge coupling in 

tokamaks 
  Fluid-structure vibrations 

in aerodynamics 
  Boundary layer-bulk 

phenomena in fluids 
  Surface-bulk phenomena 

in solids 

  Bulk-bulk coupling 
  Radiation-hydrodynamics 
  Magneto-hydrodynamics  

Motivation #2: 
 Many simulation opportunities are multiphysics 

SST Anomalies, c/o A. Czaja, MIT 

  Coupled systems may admit destabilizing modes not 
present in either system alone 



  Model problem 
  Exact solution 
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…  Numerical approx. 
  Phase 1 (“R”) 
  Phase 2 (“D”) 
  Overall advance 
�
  Phase 1 solution 
  Phase 2 solution 
  Overall advance 
�
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Well defined for 
all time if λ > u0 

Operator splitting can destabilize multiphysics 

Can blow up in 
finite time! 



  Example from Estep et al. (2007),   λ = 2, u0 = 1 
  50 time steps, phase 1 subcycled inside phase 2 

Operator splitting can destabilize multiphysics  
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This is a prototype for a reaction-diffusion PDE 

  Diffusive time-scale is constant in time (for each wave 
number), whereas reactive time-scale changes with solution 
magnitude 

  Besides opening the possibility of finite-time blow-up for a 
problem that is well defined for all time, operator splitting 
leaves a first-order error, independent of integration errors 
for the two phases 

  Splitting a single equation is just the simplest example 
  Other types of multiphysics (multiple equations in one 

domain, multiple domains) similarly treatable (see D. 
Estep, et al. 2007) 

0),(),0(, 0
2 >==− txuxuuauu xxt



  Climate prediction 
  Subsurface contaminant 

transport or petroleum 
recovery, and seismology 

  Medical imaging 
  Stellar dynamics, e.g., 

supernovae 
  Nondestructive evaluation 

of structures 

  Uncertainty can be in 
  constitutive laws 
  initial conditions 
  boundary conditions 

Motivation #3:  
Many simulation opportunities face uncertainty 

Subsurface property estimation, c/o Roxar 

  Sensitivity, optimization, parameter estimation, boundary 
control require the ability to apply the inverse action of the 
Jacobian or its adjoint – available in all Newton-like 
implicit methods 



Adjoints “probe” uncertain problems efficiently 
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  If we can solve for v given  ℓ 
  Then desired output … 
 
    … reduces to an inner product 

for each forcing  f  ! 

  Define adjoint operator 
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Significance and nonlinear generalizations 
  For one solution of the adjoint problem (per output 

functional desired) one can evaluate many outputs per 
input to the forward problem  
  at a cost of one inner product each 

  Otherwise, one would have to solve the forward 
problem for each input 

  Generalization to nonlinear operators is possible, 
involving local linearizations 

  Only price to be paid in coding (ability to solve with 
linearized adjoint) is often already included in the price 
paid to take the forward problem implicit 
  Caveat: shortcuts for solving with L not always available for L*   



Forward vs. inverse problems 

model 

forward problem 

solution 

inverse problem 

model 

params 

+ regularization 



Significance of inverse problems  
for implicit methods 

  Inverse problems can be formulated as PDE-
constrained optimization problems 
  objective function (mismatch of model output and “true” output) 
  equality constraints (PDE) 
  possible inequality constraints, in addition 

  Cast as nonlinear rootfinding problem  
  Form (augmented) Lagrangian 
  Take gradient of Lagrangian with respect to design variables, state 

variables, and Lagrange multipliers 
  Obtain large nonlinear rootfinding problem 

  Solving with Newton requires Jacobian of gradient, or 
Hessian of Lagrangian 
  Major blocks are Jacobian of PDE system and its adjoint �



Constrained optimization w/Lagrangian 
  Consider Newton’s method for solving the nonlinear 

rootfinding problem derived from the necessary 
conditions  for constrained optimization 

  Constraints 
  Objective 
  Lagrangian 
  Form the gradient of the Lagrangian with respect to 

each of x, u, and λ to get a root-finding problem: 
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Newton reduced SQP 
  Applying Newton’s method leads to the KKT system 

for states x , designs u , and multipliers λ 
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  Then 

�

  Newton Reduced SQP solves the Schur complement 
system  H δu = g , where H is the reduced Hessian 
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Applications requiring scalable solvers – 
conventional and progressive 

  Magnetically confined fusion  
  Poisson problems 
  nonlinear coupling of multiple 

physics codes 

  Accelerator design 
  Maxwell eigenproblems 
  shape optimization subject to 

PDE constraints 

  Porous media flow 
  div-grad Darcy problems 
  parameter estimation 

actual 
ailments 

presenting 
symptoms 



It’s all about algorithms (at the petascale) 
  Given, for example:  

  a “physics” phase that 
scales as O(N)  

  a “solver” phase that 
scales as O(N3/2) 

  computation is almost all 
solver after several 
doublings 

  Most applications groups 
have not yet “felt” this 
curve in their gut 
  as users actually get into 

queues with more than 
4K processors, this will 
change 

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes 
50% time on 
128 procs 

Solver takes 
97% time on 
128K procs 

Weak scaling limit, assuming efficiency of 
100%  in both physics and solver phases 

problem size 



Reminder: solvers evolve underneath “Ax = b” 
  Advances in algorithmic efficiency rival advances in 

hardware architecture 
  Consider Poisson’s equation on a cube of size N=n3 

  If  n=64, this implies an overall reduction in flops of    
~ 16 million 

Year Method Reference Storage  Flops 

1947 GE (banded) Von Neumann & 
Goldstine 

n5 n7 

1950 Optimal SOR Young n3 n4 log n 

1971 CG-MILU Reid n3 n3.5 log n 

1984 Full MG Brandt n3 n3 

∇2u=f 64 

64 64 

*Six months is reduced to 1 second 

*�



year 

relative 
speedup 

Algorithms and Moore’s Law 
  This advance took place over a span of about 36 years, or 24 

doubling times for Moore’s Law 
  224 ≈ 16 million ⇒ the same as the factor from algorithms alone! 
�

16 million 
speedup 

from each 

Algorithmic and 
architectural 

advances work 
together! 



Implicit methods can scale! 
2004 Gordon Bell “special” prize 

Cortical 
bone"

Trabecular 
bone"

  2004 Bell Prize in “special category” went to an implicit, 
unstructured grid bone mechanics simulation 
  0.5 Tflop/s sustained on 4 thousand procs of ASCI 

White 
  large-deformation analysis 
  in production in bone mechanics lab  
�

c/o M. Adams, Columbia 



Transonic “Lambda” Shock, Mach contours on surfaces 

  1999 Bell Prize in “special category” went to implicit, 
unstructured grid aerodynamics problems 
  0.23 Tflop/s sustained on 3 thousand processors of Intel’s 

ASCI Red 
  11 million degrees of freedom 
  incompressible and compressible Euler flow 
  employed in NASA analysis/design missions 

to      s 

Implicit methods can scale! 
1999 Gordon Bell “special” prize 



Strong scaling of parallel AMR on advection-
diffusion problem for small (yellow), medium (green), 
large (blue), and very large (red) problems sizes. Blue 
curve demonstrates nearly ideal strong scaling for 
0.5B element problem over a range of 256 to 32,768 
cores on Ranger.  

Weak scaling of parallel AMR on advection-diffusion 
problem with ~131,000 elements per core. Results 
demonstrate 50% parallel efficiency over a range of 1 to 
62,464 cores on TACC’s Sun/AMD Ranger system. 
Largest problem has ~7.9B finite elements. AMR 
imposes <10% overhead over a static mesh solver.  

Supported in part by DOE SciDAC TOPS, NSF PetaApps/Earth Sciences, and DOE NNSA PSAAP  

Illustration of parallel dynamic AMR for problem of 
modeling convection in Earth’s mantle. The figure shows 
snapshots of the thermal field at three time instants (left 
column) and corresponding adapted meshes (right 
column). The mesh resolves the rising plumes as well as 
the instabilities at the top layer. The elements span levels 4 
to 9 in octree depth. 

c/o O. Ghattas (UTexas) et al. 

2008 Gordon Bell finalist:   
implicit methods must scale!  



SPMD parallelism w/domain decomposition 
puts off limitation of Amdahl in weak scaling 

Partitioning of the grid induces 
block structure on the system 
matrix (Jacobian) 

Computation scales with area; 
communication scales with 
perimeter; ratio fixed in weak 
scaling 

Ω1 

Ω2 

Ω3 

A23 A21 A22 
rows assigned 

to proc “2” 



DD relevant to any local stencil formulation 

finite differences finite elements finite volumes 

•   lead to sparse Jacobian matrices  
J= 

node i 

row i 
•   however, the inverses are 
generally dense; even the factors 
suffer unacceptable fill-in in 3D 
•   want to solve in subdomains only, 
and use to precondition full sparse 
problem 



Estimating scalability of stencil computations  
  Given complexity estimates of the leading terms of: 

  the concurrent computation (per iteration phase) 
  the concurrent communication 
  the synchronization frequency 

  And a bulk synchronous model of the architecture including: 
  internode communication (network topology and protocol reflecting horizontal 

memory structure) 
  on-node computation (effective performance parameters including vertical 

memory structure) 

  One can estimate optimal concurrency and optimal execution 
time 
  on per-iteration basis, or overall (by taking into account any granularity-

dependent convergence rate) 
  simply differentiate time estimate in terms of (N,P) with respect to P, equate to 

zero and solve for P in terms of N  



 Estimating 3D stencil costs (per iteration) 

  grid points in each 
direction n, total work 
N=O(n3) 

  processors in each 
direction p, total procs 
P=O(p3) 

  memory per node 
requirements O(N/P) 

  concurrent execution time per 
iteration  A n3/p3 

  grid points on side of each 
processor subdomain n/p 

  Concurrent neighbor commun. 
time per iteration  B n2/p2 

  cost of global reductions in each 
iteration  C log p or C p(1/d) 
  C  includes synchronization 

frequency 

  same dimensionless units for 
measuring A, B, C  
  e.g., cost of scalar floating point 

multiply-add 



3D stencil computation illustration 
Rich local network, tree-based global reductions 

  total wall-clock time per iteration 

  for optimal p,            , or   
     
    or (with                        ), 
   

  without “speeddown,”  p can grow with n  
  in the limit as  
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3D stencil computation illustration  
Rich local network, tree-based global reductions 

  optimal running time 
 
 
     where 
 
 
  limit of infinite neighbor bandwidth, zero neighbor latency (           ) 

     
     (This analysis is on a per iteration basis; complete analysis 

multiplies this cost by an iteration count estimate that generally 
depends on n and p.) 

    

( ),log))(,( 23 nCBAnpnT opt ρ
ρρ

++=

! 

" =
3A
2C
# 

$ 
% 

& 

' 
( 

1
3
1+ (1) * )[ ]

1
3 + 1) (1) * )[ ]

1
3# 

$ 
% 

& 

' 
( 

0→B

⎥⎦

⎤
⎢⎣

⎡ ++= .log
3
1log))(,( const

C
AnCnpnT opt



  With tree-based (logarithmic) global 
reductions and scalable nearest neighbor 
hardware: 
  optimal number of processors scales linearly with 

problem size 

  With 3D torus-based global reductions and 
scalable nearest neighbor hardware: 
  optimal number of processors scales as three-fourths 

power of problem size (almost “scalable”) 

  With common network bus (heavy 
contention): 
  optimal number of processors scales as one-fourth  

power of problem size (not “scalable”) 

Scalability results for DD stencil computations 



Factoring convergence rate into estimates  
 

  In terms of N and P, where for d-dimensional 
isotropic problems, N=h-d and P=H-d, for mesh 
parameter h and subdomain diameter H, 
iteration counts may be estimated as follows: 

Ο(P1/3) Ο(P1/2) 1-level Additive Schwarz 

Ο(1) Ο(1) 2-level Additive Schwarz 

Ο((NP)1/6) Ο((NP)1/4) Domain Jacobi (δ=0) 
Ο(N1/3) Ο(N1/2) Point Jacobi 

in 3D in 2D Preconditioning Type 

  Krylov-Schwarz iterative methods typically converge in 
a number of iterations that scales as the square-root of 
the condition number of the Schwarz-preconditioned 
system 



Where do these results come from? 
  Point Jacobi result is well known (see any book on the numerical 

analysis of elliptic problems) 
  Subdomain Jacobi result has interesting history 

  Was derived independently from functional analysis, linear algebra, and 
graph theory 

  Schwarz theory is neatly and abstractly summarized in Section 
5.2 Smith, Bjorstad & Gropp (1996) and Chapter 2 of Toselli & 
Widlund (2004) 
  condition number, κ ≤ ω [1+ρ(ε)] C0

2 

   C0
2 is a splitting constant for the subspaces of the decomposition 

   ρ(ε) is a measure of the orthogonality of the subspaces 
   ω is a measure of the approximation properties of the subspace solvers 

(can be unity for exact subdomain solves) 
  These properties are estimated for different subspaces, different 

operators, and different subspace solvers and the “crank” is turned 



Comments on the Schwarz results 
  Original basic Schwarz estimates were for: 

  self-adjoint elliptic operators 
  positive definite operators 
  exact subdomain solves,  
  two-way overlapping with  
  generous overlap, δ=O(H) (original 2-level result was O(1+H/δ)) 

  Subsequently extended to (within limits): 
  nonself-adjointness (e.g, convection)  
  indefiniteness (e.g., wave Helmholtz)  
  inexact subdomain solves 
  one-way overlap communication (“restricted additive Schwarz”) 
  small overlap 

T
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Comments on the Schwarz results, cont. 

  2-level theory requires “sufficiently fine” coarse mesh 
  However, coarse space need not be nested in the fine space or in the 

decomposition into subdomains 

  Practice is better than one has any right to expect 

“In theory, theory and practice are the same ... 
In practice they’re not!” 

  Wave Helmholtz (e.g., acoustics) is delicate at high 
frequency: 
  standard Schwarz Dirichlet boundary conditions can lead to 

undamped resonances within subdomains, 
  remedy involves Robin-type transmission boundary conditions 

on subdomain boundaries, 

0=Γu

0)/( =∂∂+ Γnuu α

— Yogi Berra 
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Illustration of 1-level vs. 2-level tradeoff 

Newton-Krylov solver with Aztec non-restarted GMRES with 1-level domain decomposition 
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver.  
Coarse Solver: “Exact” = SuperLU (1 proc), “Approx” = one step of ILU (8 proc. in parallel) 

Temperature iso-lines 
on slice plane, velocity 
iso-surfaces and 
streamlines in 3D 

N.45 

N.24 

N0 

2 – Level DD 
Exact Coarse 
Solve 

2 – Level DD  
Approx. Coarse 
Solve 

1 – Level  
DD 3D Results 

512 procs 

Total Unknowns 

Av
g.

 It
er

at
io

ns
 p

er
 N

ew
to

n 
St

ep
 

Thermal Convection 
Problem (Ra = 1000) 

c/o J. Shadid and R. Tuminaro 



“Unreasonable effectiveness” of Schwarz 
  When does the sum of partial inverses equal the 

inverse of the sums?  When the decomposition is right! 

  Good decompositions are a compromise between 
conditioning and parallel complexity, in practice 
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— the Schwarz formula! 



“Unreasonable effectiveness” of Schwarz, cont. 

  Forward Poisson operator is localized and sparse 
  Inverse operator is locally concentrated, but dense 
  A coarse grid is necessary (and sufficient, for good 

conditioning) to represent the coupling between a field 
point and its forcing coming from nonlocal regions 

Delta function, δ(x) A δ(x) A-1 δ(x) 



“Unreasonable effectiveness” of Schwarz, cont. 

  Green’s functions for the “good Helmholtz” 
operator on the unit interval, shown with four 
increasing diagonal shifts, for ξ = 0.5 

  It is intuitively clear why the diagonally dominant 
case is easy to precondition without a coarse grid 

  This corresponds to the implicitly differenced 
parabolic system, and arises commonly in practice 

[ -∇2 + k2 ] G(x, ξ) = 0 



 There is no “scalable” without “optimal” 
  “Optimal” for a theoretical numerical analyst means a 

method whose floating point complexity grows at most 
linearly in the data of the problem, N, or (more 
practically and almost as good) linearly times a polylog 
term 

  For iterative methods, this means that the product of the 
cost per iteration and the number of iterations must be O
(N logp N) 

  Cost per iteration must include communication cost as 
processor count increases in weak scaling, P ∝ N  
  BlueGene, for instance, permits this with its log-

diameter hardware global reduction 
  Number of iterations comes from condition number for 

linear iterative methods; Newton’s superlinear 
convergence is important for nonlinear iterations 



Why optimal algorithms? 
  The more powerful the computer, the greater the 

importance of optimality  
  though the counter argument is often employed L 

  Example:  
  Suppose Alg1 solves a problem in time C N2, where N is 

the input size 
  Suppose Alg2 solves the same problem in time C N log2 N 
  Suppose Alg1 and Alg2 parallelize perfectly on a machine 

of 1,000,000 processors 

  In constant time (compared to serial), Alg1 can run a 
problem 1,000 X larger, whereas Alg2 can run a 
problem nearly 65,000 X larger 



Components of scalable solvers for PDEs 
  Subspace solvers 

  elementary smoothers 
  incomplete factorizations  
  full direct factorizations 

  Global linear preconditioners 
  Schwarz and Schur methods 
  multigrid 

  Linear accelerators 
  Krylov methods 

  Nonlinear rootfinders 
  Newton-like methods 

�

alone unscalable:  
either too many 
iterations or too 
much fill-in  

opt. combins. of 
subspace solvers 

mat-vec algs. 

vec-vec algs.       
+ linear solves 



Newton-Krylov-Schwarz:  
a PDE applications “workhorse” 

Newton 
nonlinear solver 

asymptotically quadratic 
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Krylov 
accelerator 

spectrally adaptive 
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Schwarz 
preconditioner 
parallelizable 
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“Secret sauce” #1:  
iterative correction w/ each step  O(N) 

  The most basic idea in iterative methods for  Ax = b 

  Evaluate residual accurately, but solve approximately, 
where        is an approximate inverse to  A 

  A sequence of complementary solves can be used, e.g., 
with        first and then         one has 

)(1 AxbBxx −+← −

)]([ 1
1

1
2

1
2

1
1 AxbABBBBxx −−++← −−−−

2B1B

1−B

RRARRB TT 11
2 )( −− =

)( 1AB−

  Scale recurrence, e.g., with                                          , 
leads to multilevel methods 

  Optimal polynomials of                 lead to various 
preconditioned Krylov methods 



smoother 

Finest Grid 

First Coarse Grid 
coarser grid has fewer cells 

 (less work & storage) 

Restriction 
transfer from fine 
to coarse grid 

Recursively apply this 
idea until we have an 
easy problem to solve 

A Multigrid V-cycle 

Prolongation 
transfer from coarse 
to fine grid 

“Secret sauce” #2: 
treat each error component in optimal subspace 

c/o R. Falgout, LLNL 



“Secret sauce” #3: 
skip the Jacobian 

  In the Jacobian-Free Newton-Krylov (JFNK) method 
for F(u) = 0 , a Krylov method solves the linear Newton 
correction equation, requiring Jacobian-vector 
products 

  These are approximated by the Fréchet derivatives 

      
     (where       is chosen with a fine balance between 

approximation and floating point rounding error) or 
automatic differentiation, so that the actual Jacobian 
elements are never explicitly needed 

  One builds the Krylov space on a true F′(u)  (to within 
numerical approximation) 

)]()([1)( uFvuFvuJ −+≈ ε
ε

ε Carl Jacobi 



Secret sauce #4: 
use the user’s solver to precondition 

  Almost any code to solve F(u) = 0 computes 
a residual and invokes some process to 
compute an update to u based on the 
residual 

  Defines a weakly converging nonlinearly 
method 

   M is, in effect, a preconditioner and can be 
applied directly within a Jacobian-free 
Newton context  

  This is the “physics-based preconditioning” 
strategy discussed in the E3 report 

uuFM k δ)(:
uuu kk δ+←+1



Example: fast spin-up of ocean circulation model 
using Jacobian-free Newton-Krylov 

  State vector, u(t) 
  Propagation operator (this is any 

code) Φ (u,t): u(t) = Φ (u(0),t) 
  here, single-layer quasi-geostrophic ocean 

forced by surface Ekman pumping, 
damped with biharmonic hyperviscosity 

  Task: find state u that repeats every 
period T (assumed known) 

  Difficulty: direct integration (DI) to 
find steady state may require 
thousands of years of physical time 

  Innovation: pose as Jacobian-free 
NK rootfinding problem, F(u) = 0, 
where F(u) ≡ u - Φ (u(0),T) 
  Jacobian is dense, would never think of 

forming! 

converged streamfunction 

difference between DI and 
NK (10-14) 



Example: fast spin-up of ocean circulation model 
using Jacobian-free Newton-Krylov 

2-3 orders of 
magnitude 
speedup of 
Jacobian-free 
NK relative to 
Direct 
Integration 
(DI) 

OGCM: 
Helfrich-
Holland 
integrator 

Implemented 
in PETSc as 
undergraduate 
research 
project 

c/o T. Merlis (Columbia’05, now Caltech, Dept. Environmental Science & Engineering) 



Jacobian-free Newton-Krylov 
  In the Jacobian-Free Newton-Krylov (JFNK) method, a 

Krylov method solves the linear Newton correction 
equation, requiring Jacobian-vector products 

  These are approximated by the Fréchet derivatives 

      
     (where       is chosen with a fine balance between 

approximation and floating point rounding error) or by 
automatic differentiation, so that the actual Jacobian 
elements are never explicitly needed (except for 
preconditioning) 

  One builds the Krylov space on a true F’(u)  (to within 
numerical approximation) 

)]()([1)( uFvuFvuJ −+≈ ε
ε

ε



How to accommodate preconditioning 
  Krylov iteration is expensive in memory and in 

function evaluations, so subspace dimension k must be 
kept small in practice, through preconditioning the 
Jacobian with an approximate inverse, so that the 
product matrix has low condition number in 

  Given the ability to apply the action of           to a 
vector, preconditioning can be done on either the left, 
as above, or the right, as in, e.g., for matrix-free: 

)]()([1 11 uFvBuFvJB −+≈ −− ε
ε
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Philosophy of Jacobian-free NK 
  To evaluate the linear residual, we use the true F’(u) , giving a 

true Newton step and asymptotic quadratic Newton 
convergence 

  To precondition the linear residual, we do anything convenient 
that uses understanding of the dominant physics/mathematics 
in the system and respects the limitations of the parallel 
computer architecture and the cost of various operations: 
  Jacobian blocks decomposed for parallelism (Schwarz) 
  Jacobian of lower-order discretization 
  Jacobian with “lagged” values for expensive terms  
  Jacobian stored in lower precision  
  Jacobian of related discretization  
  operator-split Jacobians  
  physics-based preconditioning 



  Nonlinear Schwarz methods 
  Nonlinear Schwarz replaces linear solves with 

Newton in inner and outer iterations 
  It replaces                with a new nonlinear system 

possessing the same root,  
  Define a correction            to the     partition (e.g., 

subdomain) of the solution vector by solving the 
following local nonlinear system: 

    where                  is nonzero only in the 
components of the     partition 

  Then sum the corrections:                            to get 
an implicit function of u 
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  Nonlinear Schwarz – picture 
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  Nonlinear Schwarz – picture 
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  Nonlinear Schwarz – picture 
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  Nonlinear Schwarz, cont. 
  It is simple to prove that if the Jacobian of  F(u)  is 

nonsingular in a neighborhood of the desired root 
then                   and                have the same unique 
root 

  To lead to a Jacobian-free Newton-Krylov algorithm 
we need to be able to evaluate for any                : 
  The residual  
  The Jacobian-vector product 

  Remarkably, (Cai-Keyes, 2000) it can be shown that  

     where                   and  
  All required actions are available in terms of            ! 
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Driven cavity in velocity-vorticity coords 
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Experimental example of nonlinear Schwarz 

     Vanilla Newton’s method Nonlinear Schwarz 

Difficulty at 
critical Re 

Stagnation 
beyond 

critical Re 

Convergence 
for all Re 



Multiphysics coupling 
  Domain decomposition is fundamentally algebraic 
  It does not care (except in the preconditioner) whether 

the coupled subproblems are from different 
subdomains, or different equations sets defined over a 
common domain 

  Hence domain decomposition methods suggest 
methods for attacking multiphysics problems 

  Consider (in the next three slides) the two standard 
means of solving multiphysics problems, by nested 
elimination and by block nonlinear Gauss-Seidel, and 
then nonlinear Schwarz 



  Multiphysics coupling: partial elimination 
  Consider system                partitioned by physics as 

  Can formally solve for       in        

  Then second equation is   
  Jacobian 

can be applied to a vector in matrix-free manner 
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  Multiphysics coupling: nonlinear GS 

  In previous notation, given initial iterate 
  For k=1, 2, …, until convergence, do 

  Solve for v in 
  Solve for w in 

   Then   
0),(2 =wvF ! 
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  Multiphysics coupling: nonlinear Schwarz 

  Given initial iterate 
  For k=1, 2, …, until convergence, do 

  Define                                by 
  Define                                by 

   Then solve                               in matrix-free manner 

  Jacobian: 

  Finally                                  

! 

u1
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k{ } = v,w{ }

! 
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SciDAC’s Fusion Simulation Project: 
support of the international fusion program  

+ 

J. Fusion Energy 28: 1-59 (2007) 

ITER: $11B 
“the way”  

Fusion by 2017; criticality by 2022 

“Big Iron” meets “Big Copper” 

Fusion Simulation 
Project 

June 2007 
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Scaling fusion simulations up to ITER 

c/o S. Jardin, PPPL 

1012 needed 
(explicit 
uniform 
baseline) 

      International 
Thermonuclear 
Experimental 
Reactor 

      2017 –  first 
experiments, in 
Cadaraches, 
France 

Small 
tokamak 

Large 
tokamak 

Huge 
tokamak 



  1.5 orders: increased processor speed and efficiency 
  1.5 orders: increased concurrency 
  1 order: higher-order discretizations  

  Same accuracy can be achieved with many fewer elements 

  1 order: flux-surface following gridding 
  Less resolution required along than across field lines 

  4 orders: adaptive gridding 
  Zones requiring refinement are <1% of ITER volume and 

resolution requirements away from them are ~102 less severe 

  3 orders: implicit solvers 
  Mode growth time 9 orders longer than Alfven-limited CFL 

Where to find 12 orders of magnitude in 10 years? 
H
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    Algorithmic 
improvements bring 

yottascale (1024) 
calculation down to 

petascale (1015)! 



  Increased processor speed 
  10 years is 6.5 Moore doubling times 

  Increased concurrency 
  BG/L is already 217 procs, MHD now routinely at ca. 212 

  Higher-order discretizations  
  low-order preconditioning of high-order discretizations 

  Flux-surface following gridding 
  in SciDAC, this is ITAPS; evolve mesh to approximately follow flux 

surfaces 

  Adaptive gridding 
  in SciDAC, this is APDEC; Cartesian AMR 

  Implicit solvers 
  in SciDAC, this is TOPS; Newton-Krylov w/multigrid 

preconditioning 

Comments on ITER simulation roadmap 



Resistive MHD prototype implicit solver 
  Magnetic reconnection: the breaking 

and reconnecting of oppositely 
directed magnetic field lines in a 
plasma, replacing hot plasma core 
with cool plasma, halting the fusion 
process 

  Replace explicit updates with implicit 
Newton-Krylov from SUNDIALS with 
factor of ~5× in execution time 

Current (J = r £ B) 

J. Brin et al., “Geospace Environmental Modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 106 (2001) 3715-3719. 

c/o D. Reynolds, UCSD 



Resistive MHD: implicit solver, ex #2 

 Magnetic reconnection: 
previous example was 
compressible – primitive 
variable; this example is 
incompressible –
streamfunction/vorticity  

 Replace explicit updates with 
implicit Newton-Krylov from 
PETSc with factor of ~5× in 
speedup 

c/o F. Dobrian, ODU 



“What changed were simulations that showed that the new 
ITER design will, in fact, be capable of achieving and 

sustaining burning plasma.” 

 – Ray Orbach, 
Former Undersecretary of Energy 

The U.S. role in multi-billion-dollar international projects will 
increasingly depend upon large-scale simulation, as exemplified 

by the 2003 Congressional testimony of Ray Orbach, above. 



  Engage at a higher-level than Ax=b 
  Newton-Krylov-Schwarz/MG on coupled nonlinear system 

  Sensitivity analyses 
  validation studies 

  Stability analyses 
  “routine” outer loop on steady-state solutions  

  Optimization 
  parameter identification 
  design of facilities (accelerators, tokamaks, power plants, 

etc.) 
  control of experiments 

TOPS’ wishlist for MHD collaborations — 
“Asymptopia” 
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Applications 

A “perfect storm” for scientific simulation 

scientific models 

numerical algorithms 

computer architecture 

scientific software engineering 

(dates are symbolic) 

1686 

1947 

1976 

1992 



TOPS dreams that users will… 

  Understand range of algorithmic options w/
tradeoffs 
e.g., memory vs. time, comp. vs. comm., inner iteration 

work vs. outer 

  Try all reasonable options “easily”  
without recoding or extensive recompilation 

  Know how their solvers are performing 
with access to detailed profiling information 

  Intelligently drive solver research 
e.g., publish joint papers with algorithm researchers 

  Simulate truly new physics free from solver limits 
e.g., finer meshes, complex coupling, full nonlinearity 

User’s 
Rights 



“Co-authors” of this manifesto 

  1982 William Gropp, UIUC 
  1984 Mitchell Smooke, Yale 
  1984 Tony Chan, UCLA 
  1989 Xiao-Chuan Cai, CU-Boulder 
  1990 Barry Smith, Argonne 
  1991 David Young, Boeing 
  1992 Dana Knoll, Idaho Nat Lab  
  1992 M. Driss Tidriri, Iowa State  
  1993 V. Venkatakrishnan, Boeing 
  1993 Dimitri Mavriplis, UWyoming  

  1995 C. Timothy Kelley, NCSU 
  1995 Omar Ghattas, UT-Austin  
  1995 Lois C. McInnes, Argonne 
  1996 Dinesh Kaushik, Argonne 
  1997 John Shadid, Sandia 
  1997 Kyle Anderson, UT-C 
  1997 Carol Woodward, LLNL  
  2001 Florin Dobrian, ODU 
  2002 Daniel Reynolds, UCSD 
  2006 Yuan He, Columbia  

(with the year in which we began substantive collaborations) 
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