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In Memoriam
23 Jan 1924 — 17 July 1998

“James Lighthill was acknowledged
throughout the world as one of the great
mathematical scientists of this century. He
was the prototypical applied mathematician,
immersing himself thoroughly in the essence
and even the detail of every engineering,
physical, or biological problem he was
seeking to illuminate with mathematical
description, formulating a sequence of clear
mathematical problems and attacking them
with a formidable range of techniques
completely mastered, or adapted to the
particular need, or newly created for the
purpose, and then finally returning to the
original problem with understanding,
predictions, and advice for action.”

(from the David Crighton bio in
AMS Notices)




Plan of series

Theme: role of mathematics in Computational Science
& Engineering, specifically large-scale simulation

Our philosophy has been to look at the scientific

opportunity of large-scale simulation from three

perspectives, concentrating one lecture on each
m Applications, Architectures, Algorithms

FSU Lighthill lectures are presumed neither cumulative
nor exclusive
m Individuals may attend any one without prerequisite
m Individuals invited to attend all three (Engineering,
Mathematics, Public)
This requires a modicum of audience patience for either
m Delegation (individual lectures not completely self-contained)

m Repetition (lectures have some overlap)



Plan of mathematics presentation

® Motivations for implicit solvers

m trends: multi-scale, multi-physics, multi-solve (sensitivity, stability,
uncertainty quantification, design, control, inversion)

m understanding: one-dimensional model problems, linear and
nonlinear

® State-of-the-art for large-scale nonlinearly implicit
solvers (at least in the DOE ©)
m brief look at algorithmic prototype: Newton-Krylov-Schwarz
m intuition about how it scales (up to the petascale, at least)

® Illustration: “stories from the trenches”
m an undergraduate semester project “gone Broadway”

m community code simulations supporting international magnetically
confined fusion energy program (ITER reactor)



® Why we would, it we could :
1. multiscale problems with good scale separation
2. coupled problems (“multiphysics”)
3. problems with uncertain or controllable inputs
(optimization: design, control, inversion)
® Wecan, sowe should!
1. optimal and scalable algorithms known

2. freely available software

3. reasonable learning curve that harvests legacy
code



Current focus on Jacobian-free implicit methods

@ Jacobian a steep price,
in terms of coding < >
m very valuable to have, but T
not necessary

m approximations thereto
often sufficient

. . Tianhe 1A
m meanwhile, automatic
. o (#1 on the
differentiation tools are Top 500)
lowering the threshold
® 7wo stories to track in
supercomputing
m raise the peak capability - =

m lower the entry threshold < >




Recent “E*” report highlights
limitations of explicit methods

“The dominant computational
Modeling and solution strategy over the past 30

Simulation at th
E:::c:“f?o? . years has been the use of first-

Energy and the order-accurate operator-splitting,
Environment

semi-implicit and explicit time
.. integration methods, and decoupled
. AL . nonlinear solution strategies. Such

Horst Simon

ey el methods have not provided the

2%
Thomas Zacharia ey
Oak Ridge National Labarnton

e 2 stability properties needed to
S | perform accurate simulations over
the dynamical time-scales of
interest. Moreover, in most cases,
numerical errors and means for
controlling such errors are
understood heuristically at best.”




Recent E’ report highlights
opportunities for implicit methods

Modeling and
Simulation at the
Exascale for
Energy and the
Environment

Co-Chairs:
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“Research in linear and nonlinear
solvers remains a critical focus
area because the solvers provide
the foundation for more advanced
solution methods. In fact, as
modeling becomes more

. sophisticated to include,

increasingly, optimization,
uncertainty quantification,
perturbation analysis, and more,
the speed and robustness of the
linear and nonlinear solvers will
directly determine the scope of
feasible problems to be solved.”



Many of the eight new “extreme scale” reports
identifies implicitness as a priority*

Scientific Grand Challenges

CHALLENGES IN CLIMATE CHANGE SCIENCE AND
THE ROLE OF COMPUTING AT THE EXTREME SCALE

November 6-7, 2008 » Washington D.C.

2009

“The following priority research
direction [was] identified: develop
scalable algorithms for non-
hydrostatic atmospheric dynamics
with quasi-uniform grids,
implicit formulations, and adaptive
and multiscale and multiphysics
coupling... Improvements in

| scalability alone will not be

sufficient to obtain the needed
throughput (the time it takes to
complete a climate simulation).
Obtaining the needed level of
throughput will also require
incorporating as much implicitness
as possible ...”

*Extreme scale fusion report is even more forceful



“Explicit” versus “implicit”
u_u
o  ox
® Explicit methods evaluate a * l@ = @V(@ —2@+@)

Jj+l1
function of state data at t

prior time, to update each A
component of the current ” ) T Ay
state independently

m equivalent to matrix-vector ! "

multiplication, in linear
problems

® Implicit methods solve a U f:+1 -2 j: +(Jj:_13 = @
function of state data at the
current time, to update all ® f ®
A4

components simultaneously

i) T

m equivalent to inverting a
[ o [ O -
matrix, in linear problems _




Explicit methods can be unstable —

linear example
U =U; +v(U, -2U" +U")

¢

initial V\ A
data | | e {
I N
after 1 /\ /\
(€,
step | J

4 yn+l n+l n+l n+l
after 25 c QU v =205 1) =U;
steps /\ /h\\ n+1
after 50

steps /W . ; :

c/o K. Morton & D. Mayers, 2005



Explicit methods can be unphysically oscillatory —
nonlinear example (“profile stiffness”)
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Timesteps for equivalent accuracy —
GLF23 with gradient-dependent diffusivity

Convergence plot with logarithmic horizontal scale
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—&— Newton Method
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Time Step At
Example from fusion collaboration: for sufficiently small timestep, the nonlinearly

implicit and linearly implicit with lagged diffusivity converge on the same result, but
the nonlinear implicit permits timesteps 10 times larger with same accuracy

c/o Steve Jardin, PPPL



However —
implicit methods can be unruly and expensive

Explicit Naive Implicit
Reliability robust when stable uncertain
Performance predictable data-dependent
Concurrency O(N) limited
Synchronization once per step many times per step
Communication | nearest neighbor* global, in principle
Workspace O(N) ON "), e.g., w=5/3
Complexity O(N) O(N ), e.g., c=7/3

* plus the estimation of the stable step size




Motivation #1:

Many simulation opportunities are multiscale
® Multiple spatial scales

m interfaces, fronts, layers

m thin relative to domain
size, 0 << L

® Multiple temporal scales
m fast waves

m small transit times
relative to convection or Richtmeyer-Meshkov instability, c/o A. Mirin, LLNL
diffusion, << T

® Analyst must isolate dynamics of interest and model the rest in a

system that can be discretized over more modest range of scales

® Often involves filtering of high frequency modes, quasi-
equilibrium assumptions, etc.

® May lead to infinitely “stiff”” subsystem requiring implicit
treatment



Examples of scale-separated features
of multiscale problems

® Gravity surface waves in global climate
@ Alfvén waves in tokamaks
® Acoustic waves in aerodynamics

® Fast transients in detailed kinetics chemical
reaction

® Bond vibrations in protein folding (?)

Explicit methods are restricted to marching out the long-scale dynamics
on short scales. Implicit methods can “step over” or “filter out” with
equilibrium assumptions the dynamically irrelevant short scales,
ignoring stability bounds. (Accuracy bounds must still be satisfied; for
long time steps, one can use high-order temporal integration schemes!)




What’s “big iron” for, if not multiscale?

System
72 racks

IBM’s BlueGene/P: 72K Rack
quad-core procs w/ 2 32 node cards

FMADD @ 850 MHz . .

=1.003 Pflop/s 33

Forschungszentrum % el

Jeulich =
Node Card

(#9 on TOp S 00)32 compute cards

e e R e

PELE R e st

Compute Card
1 chip

nnnnn

435 GF/s

Chip 64 GB
4 processors i
<> 13.6 GF/s
o 2 GB DDRAM
. S .
8 MB EDRAM Thread concurrency:

288K (or 294,912) processors



Review: two definitions of scalability

e “Strong scaling”

m execution time (7) decreases in
inverse proportion to the number
of processors (p)

m fixed size problem (N) overall

m often instead graphed as
reciprocal, “speedup”

® “Weak scaling” (memory
bound)

m execution time remains constant,
as problem size and processor
number are increased in
proportion

m fixed size problem per processor

m also known as “Gustafson scaling”

log T

Slope
=-1
/l/\C‘ ..,.. "n.p.-(?-(-)r
Oo&
Z
(?OZ‘
good
log p
Slope - poor
............... N x p good
p



Solvers

scaling:

algebraic multigrid (AMG) on BG/L (hypre)

® Algebraic multigrid a key algorithmic technology

m Discrete operator defined for finest grid by the application, itself, and for many
recursively derived levels with successively fewer degrees of freedom, for solver

purposes

m Unlike geometric multigrid, AMG not restricted to problems with “natural”

coarsenings derived from grid alone

e Optimality (cost per cycle) intimately tied to the ability to

coarsen aggressively

® Convergence scalability (number of cycles) and parallel
efficiency also sensitive to rate of coarsening

® While much research and
development remains, multigrid
will clearly be practical at BG/
P-scale concurrency

Figure shows weak scaling result for AMG out to
120K processors, with one 25x25x25block per
processor (up to 1.875B dofs)

c/o U. M. Yang, LLNL

20

AMG total times _ Au

5 A 15.6K dofs

2B dofs

0) 50000

no. of procs

100000

/

——Fal
——PMIS

7-pt Laplacian, total execution time, AMG-CG, total problem size ~2 billion



Explicit methods do not weak scale!

® Illustrate for CFL-limited
explicit time stepping®
® Parallel wall clock time
e TS1+a/dPa/d
e [Example: explicit wave
problem in 3D (a=1, d=3)
Domain | 103x 103x103 | 10%x10%x10* | 105x105x103
Exe. time 1 day 10 days 3 months
e Example: explicit diffusion
problem in 2D (a=2, d=2)
Domain 103% 103 10%x 104 10°% 10°
Exe. time 1 day 3 months 27 years

*assuming dynamics needs to

be followed only on coarse scales

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale 7
h computational mesh cell size

T computational time step size

t=0(h?%) stability bound on time step
n=L/h number of mesh cells in each dim
N=n? number of mesh cells overall
M=T/t number of time steps overall

O(N) total work to perform one time step
O(MN) total work to solve problem

P number of processors

S storage per processor

PS total storage on all processors (=N)
O(MN/P) parallel wall clock time

o« (T/t)(PS)/P oc T S'*wd povd

(since t & h* o [/n® = 1/N¥d = [/(PS)¥?)

“blackboard’}




Motivation #2:

Many simulation opportunities are multiphysics

® Interfacial coupling

60°NM |

Ocean-atmosphere
coupling in climate

Core-edge coupling in
tokamaks

30°N

15°N

Fluid-structure vibrations
in aerodynamics

(o]
gfoo°w 75°W 50°W 25°W

SST Anomalies, c/o A. Czaja, MIT

Boundary layer-bulk ® Bulk-bulk coupling

phenomena in fluids

Radiation-hydrod i
Surface-bulk phenomena m Radiation-hydrodynamics

in solids m Magneto-hydrodynamics

® Coupled systems may admit destabilizing modes not
present in either system alone



Operator splitting can destabilize multiphysics
® Model problem  t=-Au+u’, u(0)=u, ¢>0
uy exp(-A?) Well defined for
1+u70(eXp(—/1t)—l) a” time |fA,> Uy

e Exact solution u(t) =

® Numerical approx. U, =u(¢,), t, =kAt, k=0,1,...

e Phase 1 (“R”) i, =u,, u,(t)=U,, t <t=<t,,

@ Phase 2 (“D”) up ==Aup, uy(t,)=uz(t,,), t <tst,
e Overall advance Ui =4p(4)

Uy
® Phase 1 solution “R(t)=1_Uk(t_ )

® Phase 2 solution  u,(¢) =u,(¢,,,)exp(-A(t -t,)) _
exp(=A4 Af) Can blow up in

® Overall advance U, =U, finite time!
1-U At




Operator splitting can destabilize multiphysics
e Example from Estep et al. (2007), A=2, u,=1

® 50 time steps, phase 1 subcycled inside phase 2

2

[ ) ————r
1 “R” per “D 5 “R” per “D 10 “R” per “D”
0.8 F - '
_ | 15t 1 15
g 06 g g
02}
O -
0 05 1 L5 2 _
tme trme
. 2 Uk
u+Au=u", u0)=u,, >0 uy(t)=
( ) ) I- Uy (1 - tk)
U, exp(—Ae
u(t) = y ° un(t) =uy(t,,)exp(-At - ¢t,))
1+ -2 (exp(=At) -1) U
A U L exp(-=AAY)

UL A



This is a prototype for a reaction-diffusion PDE

u —au,_=u", u(0,x)=u,(x), t>0
@ Diffusive time-scale is constant in time (for each wave
number), whereas reactive time-scale changes with solution
magnitude

® Besides opening the possibility of finite-time blow-up for a
problem that is well defined for all time, operator splitting
leaves a first-order error, independent of integration errors
for the two phases

@ Splitting a single equation is just the simplest example

® Other types of multiphysics (multiple equations in one
domain, multiple domains) similarly treatable (see D.
Estep, et al. 2007)



Motivation #3:

Many simulation opportunities face uncertainty
® Climate prediction —

e Subsurface contaminant ==
transport or petroleum :
recovery, and seismology

Medical imaging EEE

ol Shae Subsurface property estimation, c/o Roxar

Stellar dynamics, e.g.,

supernovae ® Uncertainty can be in

) . m constitutive laws
® Nondestructive evaluation

of structures m boundary conditions

® Sensitivity, optimization, parameter estimation, boundary
control require the ability to apply the inverse action of the
Jacobian or its adjoint — available in all Newton-like
implicit methods

m initial conditions



Adjoints “probe” uncertain problems efficiently

e “Forward” operator equation Lu, = f,, k samples
e Desired functional of solution /() = < g,u>

® Define adjoint operator L'v= g
<L*v,u> = <v, Lu>

e If we can solve for vgiven ¢ L v=/

® Then desired output ... l(u, )= <€,uk> =
<L*v,uk> = <v,Luk> =

... reduces to an inner product
for each forcing f !

(Vs fi)



Significance and nonlinear generalizations
® For one solution of the adjoint problem (per output

functional desired) one can evaluate many outputs per
input to the forward problem

m at a cost of one inner product each

® Otherwise, one would have to solve the forward
problem for each input

® Generalization to nonlinear operators is possible,
involving local linearizations

® Only price to be paid in coding (ability to solve with
linearized adjoint) is often already included in the price
paid to take the forward problem implicit

m Caveat: shortcuts for solving with L not always available for L*”



Forward vs. inverse problems

forward problem

inverse problem

+ regularization



Significance of inverse problems

for implicit methods
® Inverse problems can be formulated as PDE-

constrained optimization problems

m objective function (mismatch of model output and “true” output)
m equality constraints (PDE)

m possible inequality constraints, in addition

@ Cast as nonlinear rootfinding problem
m Form (augmented) Lagrangian

m Take gradient of Lagrangian with respect to design variables, state
variables, and Lagrange multipliers

m Obtain large nonlinear rootfinding problem
® Solving with Newton requires Jacobian of gradient, or
Hessian of Lagrangian ,

m Major blocks are Jacobian of PDE system and its adjoint



Constrained optimization w/Lagrangian

Consider Newton’s method for solving the nonlinear
rootfinding problem derived from the necessary
conditions for constrained optimization

Constraints f(x,u) =0 ;xER";ucRh”; FeR”
Objective minu D(x,u) ; DENR

Lagrangian ®(x,u)+ A f(x,u); AER"

Form the gradient of the Lagrangian with respect to
each of x, u, and A to get a root-finding problem:

O (x,u)+ A f.(x,u)=0
O (x,u)+ A f,(x,u)=0
f(x,u)=0



Newton reduced SQP

® Applying Newton’s method leads to the KKT system
for states x , designs u , and multlphers A

w_ WL J ] [g.

x@JuT ou|=-|g,
J) J

0llor| |f

® Newton Reduced SQP solves the Schur complement
system H ou = g, where H is the reduced Hessian

H=W,)-J1T WL - (] J‘TW W, ),
g=-g, +J J g ~(JII W —w )y
e Then J =—f—Juc5u



Applications requiring scalable solvers —
conventional and progressive

® Magnetically confined fusion
m Poisson problems

m nonlinear coupling oNnultiple
physics codes

presenting

® Accelerator desi symptoms

m Maxwell eigenproblelys

m shape optimization

PDE constraints actual

. allments
® Porous media fiow

m div-grad Darcy problems

m parameter estimation




It’s all about algorithms (at the petascale)

® Given, for example:

m a “physics” phase that
scales as O(N)

m a “solver” phase that
scales as O(N*?)

Weak scaling limit, assuming efficiency of
100% in both physics and solver phases

1.2

1

B Solver
E Physics

m computation is almost all

solver after several

doublings 02
[ d o 0
® Most applications groups i\ \s 16 e 26 10
have not yet “felt” this proviem sze
[ d [ d \
curve in their gut | ~ N
m as users actually get into Solver takes Solver takes
queues with more than 50% time on 97% time on
4K processors, this will 128 procs 128K procs

change \- /' J



Reminder: solvers evolve underneath “4Ax =5"

® Advances in algorithmic efficiency rival advances in
hardware architecture

e Consider Poisson’s equation on a cube of size N=n’

Year | Method Reference Storage Flops
1947 | GE (banded) Von Neumann & n’
Goldstine
1950 | Optimal SOR | Young n’
1971 | CG-MILU Reid n’
1984 | Full MG Brandt n3

o If n=64, this implies an overall reduction in flops of
~ 16 million-*

*Six months is reduced to 1 second



Algorithms and Moore’s Law

® This advance took place over a span of about 36 years, or 24
doubling times for Moore’s Law

® 2%~ 16 million = the same as the factor from algorithms alone!

8

10
_EulMer 4
(16 million *
10°} speedup /// y
from each 2
. ihal SOR =
relative .« P |

speedup

-~ Moore's Law

Gausgfs/e/idel

10 1 - Algorithmic and |
e architectural
/ advances work
:
10° anded GE together
a l I : : ! L I

year



Implicit methods can scale!
2004 Gordon Bell “special” prize

® 2004 Bell Prize in “special category” went to an implicit,
unstructured grid bone mechanics simulation

m 0.5 Tflop/s sustained on 4 thousand procs of ASCI
White

m large-deformation analysis
m in production in bone mechanics lab

DB: DB.00.silo
Cycle: 0 Time:0

Cortical ~
bone

user: atulg
Tue Jul 1317:69:51 2004

Trabecular
c/o M. Adams, Columbia bone

Terascale Optimal PDE Simulations



Implicit methods can scale!
1999 Gordon Bell “special” prize

® 1999 Bell Prize in “special category” went to implicit,
unstructured grid aerodynamics problems

m (.23 Tflop/s sustained on 3 thousand processors of Intel’s
ASCI Red

m 11 million degrees of freedom

incompressible and compressible Euler flow

employed in NASA analysis/design missions

ntours on surfaces

[T

1]

Terascale Optimal PDE Simulations



Supported in part by DOE SciDAC TOPS, NSF PetaApps/Earth Sciences, and DOE NNSA PSAAP

2008 Gordon Bell finalist:

implicit methods must scale!

Ilustration of parallel dynamic AMR for problem of
modeling convection in Earth’s mantle. The figure shows
snapshots of the thermal field at three time instants (left
column) and corresponding adapted meshes (right
column). The mesh resolves the rising plumes as well as
the instabilities at the top layer. The elements span levels 4
to 9 in octree depth.

c/o O. Ghattas (UTexas) ef al.

Parallel efficiency

Relative time steps per total run time S

08

06

04

02

0
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 62464

Number of cores

Weak scaling of parallel AMR on advection-diffusion
problem with ~131,000 elements per core. Results
demonstrate 50% parallel efficiency over a range of 1 to
62,464 cores on TACC’s Sun/AMD Ranger system.
Largest problem has ~7.9B finite elements. AMR
imposes <10% overhead over a static mesh solver.

1000

Ideal speedup
1.99M elements —&—
32.7M elements —&—
531M elements —&—
2.24B elements —&—

100

Speedup

1

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Number of cores

Strong scaling of parallel AMR on advection-
diffusion problem for small (yellow), medium (green),
large (blue), and very large (red) problems sizes. Blue
curve demonstrates nearly ideal strong scaling for
0.5B element problem over a range of 256 to 32,768
cores on Ranger.



SPMD parallelism w/domain decomposition
puts off limitation of Amdahl in weak scaling

rows assigned
to procg “2” { AZ[
Partitioning of the grid induces
block structure on the system
matrix (Jacobian)

Computation scales with area;
communication scales with
perimeter; ratio fixed in weak
scaling



DD relevant to any local stencil formulation

finite differences finite elements finite volumes

:>!¢

* lead to sparse Jacobian matrices row 1

* however, the inverses are J—
generally dense; even the factors

suffer unacceptable fill-in in 3D

« want to solve in subdomains only,

and use to precondition full sparse

problem




Estimating scalability of stencil computations

® Given complexity estimates of the leading terms of:
m the concurrent computation (per iteration phase)
m the concurrent communication

m the synchronization frequency

® And a bulk synchronous model of the architecture including:

m internode communication (network topology and protocol reflecting horizontal
memory structure)

m on-node computation (effective performance parameters including vertical
memory structure)

® One can estimate optimal concurrency and optimal execution
time

m on per-iteration basis, or overall (by taking into account any granularity-
dependent convergence rate)

m simply differentiate time estimate in terms of (/V,P) with respect to P, equate to

zero and solve for P in terms of NV



Estimating 3D stencil costs (per iteration)

® grid points in each
direction n, total work
N=0(n>)

® processors in each
direction p, total procs
P=0(p’)

® memory per node
requirements O(N/P)

concurrent execution time per
iteration A n’/p’

grid points on side of each
processor subdomain n/p

Concurrent neighbor commun.
time per iteration B n’/p’

cost of global reductions in each
iteration C logp or C p¥

m C includes synchronization
frequency
same dimensionless units for
measuring A, B, C

m e.g., cost of scalar floating point
multiply-add



3D stencil computation illustration

Rich local network, tree-based global reductions

e total wall-clock time per iteration
3 2

T(n,p)=An—3+Bn—2+Clogp
p

p
3 2
o foroptimalp,£—0 or _3An__23_+£ 0,
Ip pt P p
3
or (with 4= 3232 ),
243A4°C
|
% | |
Pu=(0] (Ira=-0] b0 ] )

e without “speeddown,” p can grow with n

® in the limit as % — ()
34\
popt N

C



3D stencil computation illustration

Rich local network, tree-based global reductions

® optimal running time

A B
T(napopt(n)) = 3 + 2 + ClOg(,Oﬂ),
PP

p= (i—é)%([l +(1- \/5)]% + [1 ~(1- \/5)]%)

® limit of infinite neighbor bandwidth, zero neighbor latency (B —0)

where

I'(n,p,,(n))=C|logn+ élogg + const.

(This analysis is on a per iteration basis; complete analysis
multiplies this cost by an iteration count estimate that generally
depends on 7 and p.)




Scalability results for DD stencil computations

/| NN

RIS
\\

® With tree-based (logarithmic) global
reductions and scalable nearest neighbor
hardware:

I
k\\

il
A

=
NS

i
Y

m optimal number of processors scales /inearly with
problem size

e With 3D torus-based global reductions and
scalable nearest neighbor hardware:

m optimal number of processors scales as three-fourths
power of problem size (almost “scalable”)

® With common network bus (heavy
contention):

m optimal number of processors scales as one-fourth s Ea—
power of problem size (not “scalable”) —

lllll



Factoring convergence rate into estimates

® Krylov-Schwarz iterative methods typically converge in
a number of iterations that scales as the square-root of
the condition number of the Schwarz-preconditioned

system ) -
® In terms of /Vand P, where for d-dimensional HJ 0
isotropic problems, N=h and P=H", for mesh |- -
parameter 27 and subdomain diameter H, @ | Q _____
iteration counts may be estimated as follows: o8
Preconditioning Type in 2D in 3D
Point Jacobi O(NI/Z ) O(N1/3 )
Domain Jacobi (0=0) 0((NP)1/4 ) 0((NP)1/6 )
1-level Additive Schwarz O(pI/Z ) 0(P1/3 )
2-level Additive Schwarz O(l) O(1)




Where do these results come from?

® Point Jacobi result is well known (see any book on the numerical
analysis of elliptic problems)
® Subdomain Jacobi result has interesting history

m Was derived independently from functional analysis, linear algebra, and
graph theory

® Schwarz theory is neatly and abstractly summarized in Section
5.2 Smith, Bjorstad & Gropp (1996) and Chapter 2 of Toselli &
Widlund (2004)

m condition number, Kk < w [I+p(€)] C,’
m C/’ is a splitting constant for the subspaces of the decomposition

m  P(E) is a measure of the orthogonality of the subspaces
m @ is a measure of the approximation properties of the subspace solvers
(can be unity for exact subdomain solves)

m These properties are estimated for different subspaces, different
operators, and different subspace solvers and the “crank” is turned



Comments on the Schwarz results

® Original basic Schwarz estimates were for:
m self-adjoint elliptic operators
m positive definite operators
m exact subdomain solves, Al._l
m two-way overlapping with Rl.,RZ.T
m generous overlap, 0=0(H) (original 2-level result was O(1+H/0))
® Subsequently extended to (within limits):
nonself-adjointness (e.g, convection)
indefiniteness (e.g., wave Helmholtz)

O
O

B inexact subdomain solves

m one-way overlap communication (“restricted additive Schwarz”)
O

small overlap



Comments on the Schwarz results, cont.

® 2-level theory requires “sufficiently fine” coarse mesh
m However, coarse space need not be nested in the fine space or in the

decomposition into subdomains

® Practice is better than one has any right to expect

“In theory, theory and practice are the same ...

In practice they’re not!” 8
— Yogi Berra &'

® Wave Helmholtz (e.g., acoustics) is delicate at high
frequency:

m standard Schwarz Dirichlet boundary conditions can lead to
undamped resonances within subdomains, /. = 0

m remedy involves Robin-type transmission boundary conditions
on subdomain boundaries, (¢ + ¢ du/ on). =0



Illustration of 1-level vs. 2-level tradeoff

Thermal Convection
Problem (Ra = 1000)

Temperature iso-lines
on slice plane, velocity
iso-surfaces and
streamlines in 3D

Avg. Iterations per Newton Step

3d Thermal Convection

10°

10 F

10

3D Results 4
W2 Level txacl 512 procs /
—emm {5
¢ 2 Level Approx.
e 2 33xM 24

11— Level

DD

{ 2-Level DD

¢ Approx. Coarse

1 Solve

2 —Level DD
Exact Coarse
L-Solve

10

Total Unknowns
c/o J. Shadid and R. Tuminaro

Newton-Krylov solver with Aztec non-restarted GMRES with 1-level domain decomposition
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver.
Coarse Solver: “Exact” = SuperLU (1 proc), “Approx” = one step of ILU (8 proc. in parallel)

Sandia
National
Laboratories



“Unreasonable effectiveness” of Schwarz

® When does the sum of partial inverses equal the

inverse of the sums? When the decomposition is right!
Let {rl} be a complete set of orthonormal row
eigenvectorsford: rAd=ar, or g =y AriT

Then
A = ZiriTairi

and | T -1 T TN-1
A7 =2 a; =20 (ndr ),

— the Schwarz formula!

® Good decompositions are a compromise between
conditioning and parallel complexity, in practice



“Unreasonable effectiveness” of Schwarz, cont.

Delta function, d(x)

® Forward Poisson operator is localized and sparse

® Inverse operator is locally concentrated, but dense

® A coarse grid is necessary (and sutficient, for good
conditioning) to represent the coupling between a field
point and its forcing coming from nonlocal regions



“Unreasonable effectiveness” of Schwarz, cont.

——

k = 0.1 K = 1 K = 10 K = 20

5 Yo 04 4/05\ Ho Ol
2+ K2 G(x, &) =0

® Green’s functions for the “good Helmholtz”
operator on the unit interval, shown with four

increasing diagonal shifts, for £ = 0.5

@ It is intuitively clear why the diagonally dominant
case is easy to precondition without a coarse grid

® This corresponds to the implicitly differenced
parabolic system, and arises commonly in practice



There is no “scalable” without “optimal”
“Optimal” for a theoretical numerical analyst means a
method whose floating point complexity grows at most
linearly in the data of the problem, /V, or (more
practically and almost as good) linearly times a polylog
term

For iterative methods, this means that the product of the
cost per iteration and the number of iterations must be O
(N logP N)

Cost per iteration must include communication cost as
processor count increases in weak scaling, P <« N

m BlueGene, for instance, permits this with its log-
diameter hardware global reduction

Number of iterations comes from condition number for
linear iterative methods; Newton’s superlinear
convergence is important for nonlinear iterations



Why optimal algorithms?

The more powerful the computer, the greater the
importance of optimality

m though the counter argument is often employed ®

Example:

m  Suppose Algl solves a problem in time C N°, where N is
the input size

m  Suppose Alg2 solves the same problem in time C N log, N
m Suppose Algl and Alg2 parallelize perfectly on a machine
of 1,000,000 processors
In constant time (compared to serial), A/g] can run a
problem 1,000 X larger, whereas Alg2 can run a
problem nearly 65,000 X larger



Components of scalable solvers for PDEs

® Subspace solvers

m clementary smoothers

alone unscalable
either too many
m incomplete factorizations iterations or too

much fill-in

RN

m full direct factorizations

® Global linear preconditioners

m Schwarz and Schur methods opt. combins. of

A\

subspace solvers

m multigrid

® Linear accelerators
m Krylov methods

mat-vec algs.

/\

® Nonlinear rootfinders

m Newton-like methods

vec-vec algs.

7\

+ linear solves




Newton-Krylov-Schwarz:
a PDE applications “workhorse”

Fu)=F(u)+F'(u)ou=0 Jou =-F M7 Jou=-M"F
u=u_+Adu ou= argmin {A+F} M= R'(RJR)'R
XSV ={F JF ,J*F -}

Newton Krylov Schwarz

nonlinear solver accelerator preconditioner
asymptotically quadratic spectrally adaptive parallelizable



“Secret sauce” #1:
iterative correction w/ each step O(V)
@ The most basic idea in iterative methods for Ax = b
x < x+ B (b- Ax)
@ Evaluate residual accurately, but solve approximately,
where B~'is an approximate inverse to A

® A sequence of complementary solves can be used, e.g.,
with B, first and then 5, one has

x<—x+[B" +B,' =B, AB'|(b - Ax)
® Scale recurrence, e.g., with 5, b= RT(RART)_lR .
leads to multilevel methods

e Optimal polynomials of (B _IA) lead to various
preconditioned Krylov methods



“Secret sauce” #2:
treat each error component in optimal subspace

A Multigrid V-cycle

Finest Grid

Restriction
transfer from fine
to coarse grid

Prolongation
coarser grid has fewer cells : transfer from coarse
(less work & storage) First Coarse Grid to fine grid
v , Vi
\ /
\ /
\ /
. : .

_Recurs:_vely apply this . )/
idea until we have an \ 7

easy problem to solve

c/o R. Falgout, LLNL



“Secret sauce” #3:
skip the Jacobian

® In the Jacobian-Free Newton-Krylov (JFNK) method

for F(1) = 0, a Krylov method solves the linear Newton
correction equation, requiring Jacobian-vector
products

® These are approximated by the Fréchet derivatives

J(u)v~l[F(u +éev)—F(u)]
£

(where & is chosen with a fine balance between
approximation and floating point rounding error) or
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed

Carl Jacobi

e One builds the Krylov space on a true /() (to within
numerical approximation)



Secret sauce #4:
use the user’s solver to precondition

Almost any code to solve F(u) = 0 computes
a residual and invokes some process to

compute an update to # based on the

/s

residual )
Defines a weakly converging nonlinearly Aol b\
r |
method LYY A (10
k =N Ls
M : F(u*) — du AN (o3
k+1 k Y =)
3

M is, in effect, a preconditioner and can be
applied directly within a Jacobian-free
Newton context

This is the “physics-based preconditioning”
strategy discussed in the E° report



Example: fast spin-up of ocean circulation model
using Jacobian-free Newton-Krylov

15

® State vector, u(?)
® Propagation operator (this is any

| 1
0.8r

code) D (u,1): u(t) = @ (u(0),1) 06|
m here, single-layer quasi-geostrophic ocean 04l |
forced by surface Ekman pumping, .'
damped with biharmonic hyperviscosity 0.2
® Task: find state u that repeats every o
period T (assumed kIlOWll) converged streamfunction
® Difficulty: direct integration (DI) to 1@1@ _\‘\
find steady state may require °‘3@%% J |
thousands of years of physical time 06 @ ;)]
® Innovation: pose as Jacobian-free o-4ﬂ / / / |
. Vol
NK rootfinding problem, F(u) = 0, 02 | t/ ; |
where F(u) = u - @ (u(0),T) )N

D L
. . . 0 0.2 0.4 0.6 0.8 1
m Jacobian is dense, would never think of difference between DI and

forming! NK (1019)



Residual

Residual

Example: fast spin-up of ocean circulation model
using Jacobian-free Newton-Krylov

32% grid, §_ = 0.02775

Dl

0

- = NK
2046.2

200 400 600
Integration time (years)
128% grid, §_ = 0.0235

Dl

- Y——

566.0

200 400 600

Integration time (years)

Residual

Residual

64° grid, 5 = 0.025

Dl

10° ¢
- = fNK
107
107"ty == 873.4
0 200 400 600
Integration time (years)
256° grid, 5_ = 0.0232
10" Dl
= e K
107
109.4
_ID—HP
144 6
0 200 400 600

Integration time (years)

2-3 orders of
magnitude
speedup of
Jacobian-free
NK relative to
Direct

Integration
(D)

OGCM:
Helfrich-
Holland
integrator

Implemented
in PETSc as
undergraduate
research
project

c/o T. Merlis (Columbia’05, now Caltech, Dept. Environmental Science & Engineering)



Jacobian-free Newton-Krylov

® In the Jacobian-Free Newton-Krylov (JFNK) method, a
Krylov method solves the linear Newton correction
equation, requiring Jacobian-vector products

® These are approximated by the Fréchet derivatives

1
Jw)y=—[F(u+ev)-F(u)]
E
(where & is chosen with a fine balance between

approximation and floating point rounding error) or by
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed (except for
preconditioning)

e One builds the Krylov space on a true F'’(u) (to within
numerical approximation)



How to accommodate preconditioning

® Krylov iteration is expensive in memory and in
function evaluations, so subspace dimension £ must be
kept small in practice, through preconditioning the
Jacobian with an approximate inverse, so that the
product matrix has low condition number in

(B'A)yx=B""b

. oy . —1
e Given the ability to apply the action of /3 to a
vector, preconditioning can be done on either the left,
as above, or the right, as in, e.g., for matrix-free:

JB7y = 1 [F(u+eB™'v) - F(u)]
E



Philosophy of Jacobian-free NK

® To evaluate the linear residual, we use the true F'’(u) , giving a
true Newton step and asymptotic quadratic Newton
convergence

® To precondition the linear residual, we do anything convenient
that uses understanding of the dominant physics/mathematics
in the system and respects the limitations of the parallel

computer architecture and the cost of various operations:

Jacobian blocks decomposed for parallelism (Schwarz)
Jacobian of lower-order discretization

Jacobian with “lagged” values for expensive terms
Jacobian stored in lower precision

Jacobian of related discretization

operator-split Jacobians

physics-based preconditioning



Nonlinear Schwarz methods

® Nonlinear Schwarz replaces linear solves with
Newton in inner and outer iterations

® It replaces /(#)=0 with a new nonlinear system
possessing the same root, ®(u) =0

® Define a correction (1) to the ;" partition (e.g.,
subdomain) of the solution vector by solving the
following local nonlinear system:

RFEw+0,(u)=0
where 6.(u)ER" is nonzero only in the
components of the i” partition

® Then sum the corrections: d(u)=>).06.(u) to get
an implicit function of u



Nonlinear Schwarz — picture
F(u)




F(u)

Nonlinear Schwarz — picture




Nonlinear Schwarz — picture

JTR.
F) RF+RF
0o | ', 0
R, /
0 IR RuRIF
| n B
R; RuRF

outou



Nonlinear Schwarz, cont.

® It is simple to prove that if the Jacobian of F(u) is
nonsingular in a neighborhood of the desired root
then ®(u)=0 and F(u)=0 have the same unique
root

® To lead to a Jacobian-free Newton-Krylov algorithm

we need to be able to evaluate for any , y&R":
m The residual ®(u) =) 0.(u)
m The Jacobian-vector product q)(u)'v

® Remarkably, (Cai-Keyes, 2000) it can be shown that
@ (u)yv=~3,(RJ'R)Iv
where J = F (1) and J, = R.JR,

e All required actions are available in terms of F'(u) !



Driven cavity in velocity-vorticity coords

x-velocity — V7 u — (9_60 =0
ay
y-velocity —— Vv + a—a) = ()
0x
d %, ol
vorticity —V a)+u—w +v—w—Gr— 0
0X Y% 0x

internal energy — VzT + Pr(u g + V—) 0

0x dy



Experimental example of nonlinear Schwarz

Nonlinear residuals

10° F

107"

Re=1.0e4

Re=1.0e3

Re=1.0e2

Stagnation
beyond
critical Re

Re=7.6%2

| |

Difficulty at
critical Re

20 25 30 35 40 45
Newton iterations

Vanilla Newton’s method

50

Nonlinear residuals

Re={.0e2

Ra=1.0e3

Convergence

for all Re
Re=1.0e4
1 | 1 | | | 1 1
0 15 2 25 30 % 4 &

Nonlinear Schwarz

PIN iterations

50



Multiphysics coupling

® Domain decomposition is fundamentally algebraic

@ It does not care (except in the preconditioner) whether
the coupled subproblems are from different
subdomains, or different equations sets defined over a
common domain

® Hence domain decomposition methods suggest
methods for attacking multiphysics problems

® Consider (in the next three slides) the two standard
means of solving multiphysics problems, by nested
elimination and by block nonlinear Gauss-Seidel, and
then nonlinear Schwarz



Multiphysics coupling: partial elimination

® Consider system F(u)=0 partitioned by physics as

E(ulauz) = O
F,(u,,uy) =0

e Can formally solve for v, in F(u,,u,)=0
= G(u,)
® Then second equation is /,(G(u,),u,)=0

® Jacobian

df, oJF, dG aF

du2 du, du, au2

can be applied to a vector in matrix-free manner



Multiphysics coupling: nonlinear GS

[ [ [ [ [ [ [ 0 0
@ In previous notation, given initial iterate { U, ,I/tz}

e For k=1, 2, ..., until convergence, do

« - k-1
m Solve forvin F(v,u, )=0

m Solve forwm  F,(v,w)=0
® Then

(i s} = (v}



Multiphysics coupling: nonlinear Schwarz

0 .0
{u us}

Given initial iterate
For k=1, 2, ...

m Define G, (u,,u,) = oy,
m Define G, (u,,u,)=0u,

Then solve G, (u,v)=0
G,(u,v)=0
Jacobian: [iG, oG |
ou v | o
an 8G2 an
| Ju v | (E

Finally {1} ={v.w}

until convergence, do
by F(u ™ +du,us")=0
T+ 0u,)=0

yF(ukl

in matrix-free manner

oF,

Ju

OF \~ oF,
av




SCiDAC’s Fusion Simulation Project:
support of the international fusion program

U.s Depa(tment of nerg Z A
Rpcﬁynue ™D . May. 16: 18, 2007

ITER: $11B *°
“the way”
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J. Fusion Energy 28: 1-59 (2007) Fusion by 2017; criticality by 2022
“Big Iron” meets “Big Copper”



From SIAM News, Volume 39, Number 7, September 2006

Taking on the ITER Challenge, Scientists Look to
Innovative Algorithms, Petascale Computers

By Michelle Sipics

The promise of fusion as a clean, self-sustaining and essentially limitless energy source has become a mantra for the age, held out by many
scientists as a possible solution to the world's energy crisis and a way to reduce the amounts of greenhouse gases released into the atmosphere
by more conventional sources of energy. If self-sustaining fusion reactions can be realized and maintained long enough to produce electricity,
the technology could potentially revolutionize energy generation and use.

ITER, initially short for International Thermonuclear Experimental Reactor, is now the official, non-acronymic name {meaning “the way™ in
Latin of what is undoubtedly the largest undertaking of its kind. Started as a collaboration between four major parties in 1985, ITER has evolved
into a seven-party project that finally found a physical home last year, when it was announced that the ITER fusion reactor would be built in
Cadarache, in southern France. (The participants are the European Union, Russia, Japan, China, India, South Korea, and the United States.) In
May. the seven initialed an agreement documenting the negotiated terms for the construction, operation, and decommissioning of the ITER toka-
mak, signifying ancther milestone for both the project itself and its eventual goal of using fusion to facilitate large-scale energy generation for
the world.

FProblems remain, however—notably the years, and perhaps decads
proposed ITER tokamak is currently out of reach. But according 2
acting director of the Institute for Scientific Computing Research (ISCE) -- seapppesablntonal Loboratanys 7 to perfn:lrm
such simulations may be drawing closer.

Hardware 3, Software 9

“Fusion scientists have been making useful characterizations about plasma fusion devices, physics, operating regimes and the like for over
50 years,” Kevyes says. “However, to simulate the dynamics of ITER for a tﬂ:]tﬂ] experimental ‘shot” over scales of interest with today’s most
cornmonly u-se::l algorithmic technologies would reguire approximately 10 floating-point operations.” That sounds bleak, given the 280.6
Tflop's (10" flopsis) benchmark performance of the IBM BlueGene/L at Lawrence Livermore National Laboratory—as of June the fastest
supercomputer in the world. But Keyes is optimistic: “We expect that with proper algorithmic ingenuity, we can reduce this to 105 flops”

Optirnizing the algorithms vsed, in other words, could lower the computing power required for some ITER simulations by an astounding nine
orders of magnitude. Even more exciting, those newly feasible simulations would be at the petascale—ready to run on the petaflop/s supercom-
puters widely expected within a few years.

The ingenuity envisioned by Keves even has a roadmap. Together Stephen Jardin of the Princeton Plasma Physics Laborator ves
developed a breakdown that explains where as many as 12 orders of magnitude of speedi & next decade: 1.5 from

increased parallelism, 1.5 from greater processor speed and efficiency, four from adaptive gridding, one from higher-order elements, one from
field-line following coordinates, and three from implicit algorithms.




Scaling fusion simulations up to ITER

name

: Small ; Large : Huge :
tokamak i tokamak Etokamak

Field

Mir]nr
radius

Temp.

Lundquist
no.

Mode
growth time

TASHE

Layer
thickness

aS—h‘?

Z0nes

NRxNaxN¢

CFL
timestep

AXIV,
(Explicit)

Space-
time pts

c/o S. Jardin, PPPL

1072 needed
(explicit
uniform
baseline)

International
Thermonuclear
Experimental
Reactor

2017 — first
experiments, in
Cadaraches,
France



Hardware: 3

Software: 9

(1

rders: ‘ncrease rocesso speed and efficiency

® 1.5 orders: | ne 1CV

e 1 ord ~ Algorithmic
= Sam¢ Improvements bring fewear clements

°o1 yottascale (102%4) ng
m Le calculation down to g
e 4 ord petascale (101°)!
E ~onesrequ gl M 5 of I'1 ER volume and

resolution require. .entsa , fro.  em are ~107? less severe

® 3 orders: implicit solvers
m Mode growth time 9 orders longer than Alfven-limited CFL



Comments on ITER simulation roadmap

Increased processor speed
m 10 years is 6.5 Moore doubling times

Increased concurrency
m BG/L is already 2!7 procs, MHD now routinely at ca. 212

Higher-order discretizations

m low-order preconditioning of high-order discretizations

Flux-surface following gridding

m in SciDAC, this is ITAPS; evolve mesh to approximately follow flux
surfaces

Adaptive gridding
m in SciDAC, this is APDEC; Cartesian AMR

Implicit solvers

m in SciDAC, this is TOPS; Newton-Krylov w/multigrid
preconditioning



Resistive MHD prototype implicit solver

® Magnetic reconnection: the breaking
and reconnecting of oppositely
directed magnetic field lines in a
plasma, replacing hot plasma core
with cool plasma, halting the fusion

process

® Replace explicit updates with implicit
Newton-Krylov from SUNDIALS with

factor of ~Sxin execution time

10°

Explicit vs. Implicit Timings

-- Explict
| Haa Imnplicit

107

Wall Clock Time (3)
=

107

10°
Mesh Size
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635
-12.75

1.2 &
108
0e B
0.2
-6,35 -6,36 -G, ‘]E

S1E2TS

535 18 635
1158
44

Current (J=r£B)

t 35205 t=90.449

0.6
05
b 635 -6.35

1275 1275 12.78 1275

=

1
= Hus
L}

]

t = 180.608 t 300.439 t= 450412

Max Reconnection Rats

636

1275 S12.75 12.75 -12.75
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35

J. Brin et al., “Geospace Environmental Modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 106 (2001) 3715-3719.

c/o D. Reynolds, UCSD



Resistive MHD: implicit solver, ex #2

® Magnetic reconnection:
previous example was

explicit/implicit execution time comparison

- implic'itvs.expli(.:it (t=1oo..p’=024. dtzo.oe.ug.o.om.-,g.o.oon compreSSible . primitive
variable; this example is
) incompressible —
. v. oA o 200 200 el streamfunction/vorticity
' f A : v e S0 splich
b ’ v - 1:o,flg<:09xlzip:iciﬂ
2 ) vecdhes 100 x 100 implicit o o °
L I T s e ® Replace explicit updates with
Voo e A wocsomid  iMPlicit Newton-Krylov from
‘ A o o
ot X ; PETSc with factor of ~5x in
speedup
' ! num::r of pr oe?ssors e 10

c/o F. Dobrian, ODU



“What changed were simulations that showed that the new
ITER design will, in fact, be capable of achieving and
sustaining burning plasma.”

— Ray Orbach,
Former Undersecretary of Energy;

Terascale Optimal PDE Simulations

The U.S. role in multi-billion-dollar international projects will
increasingly depend upon large-scale simulation, as exemplified
by the 2003 Congressional testimony of Ray Orbach, above.




TOPS’ wishlist for MHD collaborations —
“Asymptopia”

® Engage at a higher-level than Ax=b

m Newton-Krylov-Schwarz/MG on coupled nonlinear system

® Sensitivity analyses

m validation studies

@ Stability analyses

m “routine” outer loop on steady-state solutions
® Optimization

m parameter identification

m design of facilities (accelerators, tokamaks, power plants,
etc.)

m control of experiments



A “perfect storm” for scientific simulation

(dates are symbolic)




TOPS dreams that users will...

Understand range of algorithmic options w/
tradeofts

e.g., memory vs. time, comp. vs. comm., inner iteration
work vs. outer

Try all reasonable options “easily” User’s

without recoding or extensive recompilation Rights

Know how their solvers are performing

with access to detailed profiling information

Intelligently drive solver research

e.g., publish joint papers with algorithm researchers

Simulate truly new physics free from solver limits

e.g., finer meshes, complex coupling, full nonlinearity



“Co-authors” of this manifesto

1982 William Gropp, UIUC

1984 Mitchell Smooke, Yale

1984 Tony Chan, UCLA

1989 Xiao-Chuan Cai, CU-Boulder
1990 Barry Smith, Argonne

1991 David Young, Boeing

1992 Dana Knoll, Idaho Nat Lab
1992 M. Driss Tidriri, Iowa State
1993 V. Venkatakrishnan, Boeing
1993 Dimitri Mavriplis, UWyoming

1995 C. Timothy Kelley, NCSU
1995 Omar Ghattas, UT-Austin
1995 Lois C. McInnes, Argonne
1996 Dinesh Kaushik, Argonne
1997 John Shadid, Sandia

1997 Kyle Anderson, UT-C
1997 Carol Woodward, LLNL
2001 Florin Dobrian, ODU
2002 Daniel Reynolds, UCSD
2006 Yuan He, Columbia

(with the year in which we began substantive collaborations)






