
�
�

David Keyes
 Towards Optimal Petascale Simulations (TOPS), SciDAC Program, U.S. DOE

Mathematical and Computer Sciences & Engineering, KAUST
Applied Physics & Applied Mathematics, Columbia University

A nonlinearly implicit
manifesto

In Memoriam
23 Jan 1924 – 17 July 1998
“James Lighthill was acknowledged
throughout the world as one of the great
mathematical scientists of this century. He
was the prototypical applied mathematician,
immersing himself thoroughly in the essence
and even the detail of every engineering,
physical, or biological problem he was
seeking to illuminate with mathematical
description, formulating a sequence of clear
mathematical problems and attacking them
with a formidable range of techniques
completely mastered, or adapted to the
particular need, or newly created for the
purpose, and then finally returning to the
original problem with understanding,
predictions, and advice for action.”

(from the David Crighton bio in
AMS Notices)

Plan of series
  Theme: role of mathematics in Computational Science

& Engineering, specifically large-scale simulation
  Our philosophy has been to look at the scientific

opportunity of large-scale simulation from three
perspectives, concentrating one lecture on each
  Applications, Architectures, Algorithms

  FSU Lighthill lectures are presumed neither cumulative
nor exclusive
  Individuals may attend any one without prerequisite
  Individuals invited to attend all three (Engineering,

Mathematics, Public)

  This requires a modicum of audience patience for either
  Delegation (individual lectures not completely self-contained)
  Repetition (lectures have some overlap)

Plan of mathematics presentation
  Motivations for implicit solvers

  trends: multi-scale, multi-physics, multi-solve (sensitivity, stability,
uncertainty quantification, design, control, inversion)

  understanding: one-dimensional model problems, linear and
nonlinear

  State-of-the-art for large-scale nonlinearly implicit
solvers (at least in the DOE J)
  brief look at algorithmic prototype: Newton-Krylov-Schwarz
  intuition about how it scales (up to the petascale, at least)

  Illustration: “stories from the trenches”
  an undergraduate semester project “gone Broadway”
  community code simulations supporting international magnetically

confined fusion energy program (ITER reactor)

Going implicit?
  Why we would, if we could :

1.  multiscale problems with good scale separation
2.  coupled problems (“multiphysics”)
3.  problems with uncertain or controllable inputs

(optimization: design, control, inversion)

  We can, so we should !
1.  optimal and scalable algorithms known
2.  freely available software
3.  reasonable learning curve that harvests legacy

code

Current focus on Jacobian-free implicit methods

  Two stories to track in
supercomputing
  raise the peak capability
  lower the entry threshold

higher capability
 for hero users

best practices
 for all users

  Jacobian a steep price,
in terms of coding
  very valuable to have, but

not necessary
  approximations thereto

often sufficient
  meanwhile, automatic

differentiation tools are
lowering the threshold

Tianhe 1A
(#1 on the
Top 500)

first frontier

“new” frontier

Recent “E3” report highlights
limitations of explicit methods

“The dominant computational
solution strategy over the past 30
years has been the use of first-
order-accurate operator-splitting,
semi-implicit and explicit time
integration methods, and decoupled
nonlinear solution strategies. Such
methods have not provided the
stability properties needed to
perform accurate simulations over
the dynamical time-scales of
interest. Moreover, in most cases,
numerical errors and means for
controlling such errors are
understood heuristically at best.”

Recent E3 report highlights
opportunities for implicit methods

“Research in linear and nonlinear
solvers remains a critical focus
area because the solvers provide
the foundation for more advanced
solution methods. In fact, as
modeling becomes more
sophisticated to include,
increasingly, optimization,
uncertainty quantification,
perturbation analysis, and more,
the speed and robustness of the
linear and nonlinear solvers will
directly determine the scope of
feasible problems to be solved.”

�

Many of the eight new “extreme scale” reports
identifies implicitness as a priority*

“The following priority research
direction [was] identified: develop
scalable algorithms for non-
hydrostatic atmospheric dynamics
with quasi-uniform grids,
implicit formulations, and adaptive
and multiscale and multiphysics
coupling… Improvements in
scalability alone will not be
sufficient to obtain the needed
throughput (the time it takes to
complete a climate simulation).
Obtaining the needed level of
throughput will also require
incorporating as much implicitness
as possible …” 2009

*Extreme scale fusion report is even more forceful

“Explicit” versus “implicit”

n
j

n
j

n
j

n
j

n
j UUUUU =+−− +

−
++

+
+)2(1

1
11

1
1 ν

  Implicit methods solve a
function of state data at the
current time, to update all
components simultaneously
  equivalent to inverting a

matrix, in linear problems

2

2

x
u

t
u

∂

∂
=

∂

∂

)2(11
1 n

j
n
j

n
j

n
j

n
j UUUUU −+
+ +−+= ν

2)(x
t

Δ

Δ
≡ν

  Explicit methods evaluate a
function of state data at
prior time, to update each
component of the current
state independently
  equivalent to matrix-vector

multiplication, in linear
problems

Explicit methods can be unstable –
 linear example

n
j

n
j

n
j

n
j

n
j UUUUU =+−− +

−
++

+
+)2(1

1
11

1
1 ν

)2(11
1 n

j
n
j

n
j

n
j

n
j UUUUU −+
+ +−+= ν

Stable
for all ν

Unstable
for ν>1/2

c/o K. Morton & D. Mayers, 2005

initial
data

after 1
step

after 25
steps

after 50
steps

Δt = 0.0012 Δt = 0.0013

Explicit methods can be unphysically oscillatory –
 nonlinear example (“profile stiffness”)

⎩
⎨
⎧

>−+

≤
≡≡⎟

⎠

⎞
⎜
⎝

⎛
∂

∂

∂

∂
=

∂

∂

critcrit

crit
xx ssss

ss
sux

x
uux

xt
u

||,)|(|
||,

)(;)(;),(2/1
10

0

κκ

κ
κκαα

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

UUU

UUU

=−−

−−
+
−

+
−

++
++

+

)](

)([
1
1

1
2/1

11
12/1

1

α

αν

Linearly implicit, nonlinearly
explicit:

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

UUU

UUU

=−−

−−
+
−

++
−

++
+

+
+

+

)](

)([
1
1

11
2/1

11
1

1
2/1

1

α

αν

Linearly and nonlinearly implicit:

history at station 10

history at station 10

�

Oscillatory

Non-
oscillatory

Timesteps for equivalent accuracy –
GLF23 with gradient-dependent diffusivity

Example from fusion collaboration: for sufficiently small timestep, the nonlinearly
implicit and linearly implicit with lagged diffusivity converge on the same result, but
the nonlinear implicit permits timesteps 104 times larger with same accuracy

c/o Steve Jardin, PPPL

However –
implicit methods can be unruly and expensive

Explicit Naïve Implicit

Reliability robust when stable uncertain

Performance predictable data-dependent

Concurrency O(N) limited

Synchronization once per step many times per step

Communication nearest neighbor* global, in principle

Workspace O(N) O(N w), e.g., w=5/3

Complexity O(N) O(N c), e.g., c=7/3

* plus the estimation of the stable step size

Motivation #1:
Many simulation opportunities are multiscale
  Multiple spatial scales

  interfaces, fronts, layers
  thin relative to domain

size, δ << L
  Multiple temporal scales

  fast waves
  small transit times

relative to convection or
diffusion, τ << T

  Analyst must isolate dynamics of interest and model the rest in a
system that can be discretized over more modest range of scales

  Often involves filtering of high frequency modes, quasi-
equilibrium assumptions, etc.

  May lead to infinitely “stiff” subsystem requiring implicit
treatment

Richtmeyer-Meshkov instability, c/o A. Mirin, LLNL

Examples of scale-separated features
of multiscale problems

  Gravity surface waves in global climate
  Alfvén waves in tokamaks
  Acoustic waves in aerodynamics
  Fast transients in detailed kinetics chemical

reaction
  Bond vibrations in protein folding (?)

Explicit methods are restricted to marching out the long-scale dynamics
on short scales. Implicit methods can “step over” or “filter out” with
equilibrium assumptions the dynamically irrelevant short scales,
ignoring stability bounds. (Accuracy bounds must still be satisfied; for
long time steps, one can use high-order temporal integration schemes!)

IBM’s BlueGene/P: 72K
quad-core procs w/ 2
FMADD @ 850 MHz
= 1.003 Pflop/s

13.6 GF/s
8 MB EDRAM

4 processors

1 chip

13.6 GF/s
2 GB DDRAM

�
32 compute cards

435 GF/s
64 GB

32 node cards

72 racks

1 PF/s
144 TB

Rack

System

Node Card

Compute Card

Chip

14 TF/s
2 TB

Thread concurrency:
288K (or 294,912) processors

Forschungszentrum
Jeulich

(#9 on Top 500)

What’s “big iron” for, if not multiscale?

Review: two definitions of scalability
  “Strong scaling”

  execution time (T) decreases in
inverse proportion to the number
of processors (p)

  fixed size problem (N) overall
  often instead graphed as

reciprocal, “speedup”

  “Weak scaling” (memory
bound)
  execution time remains constant,

as problem size and processor
number are increased in
proportion

  fixed size problem per processor
  also known as “Gustafson scaling”

T

p

good

poor

poor

N ∝ p

log T

log p
good

Slope
= -1

Slope
= 0

 �
  Algebraic multigrid a key algorithmic technology

  Discrete operator defined for finest grid by the application, itself, and for many
recursively derived levels with successively fewer degrees of freedom, for solver
purposes

  Unlike geometric multigrid, AMG not restricted to problems with “natural”
coarsenings derived from grid alone

  Optimality (cost per cycle) intimately tied to the ability to
coarsen aggressively

  Convergence scalability (number of cycles) and parallel
efficiency also sensitive to rate of coarsening

�

Solvers are scaling:
algebraic multigrid (AMG) on BG/L (hypre)

Figure shows weak scaling result for AMG out to
120K processors, with one 25×25×25block per
processor (up to 1.875B dofs) procs

  While much research and
development remains, multigrid
will clearly be practical at BG/
P-scale concurrency

�

fu =Δ−

0

5

10

15

20

0 50000 100000

2B dofs

15.6K dofs

se
c

c/o U. M. Yang, LLNL

Explicit methods do not weak scale!
  Illustrate for CFL-limited

explicit time stepping*
  Parallel wall clock time

�

ddPST //1 αα+∝

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h computational mesh cell size
τ computational time step size
τ=O(hα) stability bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors (=N)
O(MN/P) parallel wall clock time
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d
(since τ ∝ hα ∝ 1/nα = 1/Nα/d = 1/(PS)α/d)
�

3 months 10 days 1 day Exe. time

105×105×105 104×104×104 103× 103×103 Domain

  Example: explicit wave
problem in 3D (α=1, d=3)

�

27 years 3 months 1 day Exe. time

105× 105 104× 104 103× 103 Domain

  Example: explicit diffusion
problem in 2D (α=2, d=2)

�

 *assuming dynamics needs to
be followed only on coarse scales

“blackboard”

  Interfacial coupling
  Ocean-atmosphere

coupling in climate
  Core-edge coupling in

tokamaks
  Fluid-structure vibrations

in aerodynamics
  Boundary layer-bulk

phenomena in fluids
  Surface-bulk phenomena

in solids

  Bulk-bulk coupling
  Radiation-hydrodynamics
  Magneto-hydrodynamics

Motivation #2:
 Many simulation opportunities are multiphysics

SST Anomalies, c/o A. Czaja, MIT

  Coupled systems may admit destabilizing modes not
present in either system alone

  Model problem
  Exact solution
�)1)(exp(1

)exp()(

0,)0(,

0

0

0
2

−−+

−
=

>=+−=

tu
tutu

tuuuuu

λ
λ

λ

λ

)(
),()(,

,)(,

,1,0,),(

11

11

1
2

++

++

+

=

≤<=−=

≤<==

=Δ=≈

kDk

kkkRkDDD

kkkkRRR

kkk

tuU
ttttutuuu

tttUtuuu
ktkttuU

λ

…  Numerical approx.
  Phase 1 (“R”)
  Phase 2 (“D”)
  Overall advance
�
  Phase 1 solution
  Phase 2 solution
  Overall advance
�

tU
tUU

tttutu
ttU

Utu

k
kk

kkRD

kk

k
R

Δ−

Δ−
=

−−=

−−
=

+

+

1
)exp(

))(exp()()(
)(1

)(

1

1

λ

λ

Well defined for
all time if λ > u0

Operator splitting can destabilize multiphysics

Can blow up in
finite time!

  Example from Estep et al. (2007), λ = 2, u0 = 1
  50 time steps, phase 1 subcycled inside phase 2

Operator splitting can destabilize multiphysics

)1)(exp(1

)exp()(

0,)0(,

0

0

0
2

−−+

−
=

>==+

tu
tutu

tuuuuu

λ
λ

λ

λ

)exp(
1

))(exp()()(
)(1

)(

1

1

t
tU

UU

tttutu
ttU

Utu

k

k
k

kkRD

kk

k
R

Δ−
Δ−

=

−−=

−−
=

+

+

λ

λ

1 “R” per “D” 5 “R” per “D” 10 “R” per “D”

This is a prototype for a reaction-diffusion PDE

  Diffusive time-scale is constant in time (for each wave
number), whereas reactive time-scale changes with solution
magnitude

  Besides opening the possibility of finite-time blow-up for a
problem that is well defined for all time, operator splitting
leaves a first-order error, independent of integration errors
for the two phases

  Splitting a single equation is just the simplest example
  Other types of multiphysics (multiple equations in one

domain, multiple domains) similarly treatable (see D.
Estep, et al. 2007)

0),(),0(, 0
2 >==− txuxuuauu xxt

  Climate prediction
  Subsurface contaminant

transport or petroleum
recovery, and seismology

  Medical imaging
  Stellar dynamics, e.g.,

supernovae
  Nondestructive evaluation

of structures

  Uncertainty can be in
  constitutive laws
  initial conditions
  boundary conditions

Motivation #3:
Many simulation opportunities face uncertainty

Subsurface property estimation, c/o Roxar

  Sensitivity, optimization, parameter estimation, boundary
control require the ability to apply the inverse action of the
Jacobian or its adjoint – available in all Newton-like
implicit methods

Adjoints “probe” uncertain problems efficiently

uu
kfuL kk

,)(
samples,

 =

=  “Forward” operator equation
  Desired functional of solution
�

k

kk

kk

fv

LuvuvL

uu
vL

,

,,

,)(
*

*

==

==

=

  If we can solve for v given ℓ
  Then desired output …

 … reduces to an inner product

for each forcing f !

  Define adjoint operator

LuvuvL

gvL

,,*

*

≡

=

Significance and nonlinear generalizations
  For one solution of the adjoint problem (per output

functional desired) one can evaluate many outputs per
input to the forward problem
  at a cost of one inner product each

  Otherwise, one would have to solve the forward
problem for each input

  Generalization to nonlinear operators is possible,
involving local linearizations

  Only price to be paid in coding (ability to solve with
linearized adjoint) is often already included in the price
paid to take the forward problem implicit
  Caveat: shortcuts for solving with L not always available for L*

Forward vs. inverse problems

model

forward problem

solution

inverse problem

model

params

+ regularization

Significance of inverse problems
for implicit methods

  Inverse problems can be formulated as PDE-
constrained optimization problems
  objective function (mismatch of model output and “true” output)
  equality constraints (PDE)
  possible inequality constraints, in addition

  Cast as nonlinear rootfinding problem
  Form (augmented) Lagrangian
  Take gradient of Lagrangian with respect to design variables, state

variables, and Lagrange multipliers
  Obtain large nonlinear rootfinding problem

  Solving with Newton requires Jacobian of gradient, or
Hessian of Lagrangian
  Major blocks are Jacobian of PDE system and its adjoint �

Constrained optimization w/Lagrangian
  Consider Newton’s method for solving the nonlinear

rootfinding problem derived from the necessary
conditions for constrained optimization

  Constraints
  Objective
  Lagrangian
  Form the gradient of the Lagrangian with respect to

each of x, u, and λ to get a root-finding problem:

�

NMN fuxuxf ℜ∈ℜ∈ℜ∈= ;;;0),(
ℜ∈ΦΦ ;),(min uxu

0),(),(=+Φ uxfux xx
Tλ

0),(=uxf
0),(),(=+Φ uxfux uu

Tλ

NT uxfux ℜ∈+Φ λλ ;),(),(

Newton reduced SQP
  Applying Newton’s method leads to the KKT system

for states x , designs u , and multipliers λ

�
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

f
g
g

u
x

JJ
JWW
JWW

u

x

ux

T
uuuux

T
x

T
uxxx

δλ

δ

δ

0

  Then

�

  Newton Reduced SQP solves the Schur complement
system H δu = g , where H is the reduced Hessian

�

fJWWJJgJJgg xuxxx
T
x

T
ux

T
x

T
uu

1)(−−− −−+−=
uxuxxx

T
x

T
u

T
ux

T
x

T
uuu JJWWJJWJJWH 1)(−−− −−−=

uJfxJ ux δδ −−=
uWxWgJ T

uxxxx
T
x δδδλ −−−=

Applications requiring scalable solvers –
conventional and progressive

  Magnetically confined fusion
  Poisson problems
  nonlinear coupling of multiple

physics codes

  Accelerator design
  Maxwell eigenproblems
  shape optimization subject to

PDE constraints

  Porous media flow
  div-grad Darcy problems
  parameter estimation

actual
ailments

presenting
symptoms

It’s all about algorithms (at the petascale)
  Given, for example:

  a “physics” phase that
scales as O(N)

  a “solver” phase that
scales as O(N3/2)

  computation is almost all
solver after several
doublings

  Most applications groups
have not yet “felt” this
curve in their gut
  as users actually get into

queues with more than
4K processors, this will
change

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes
50% time on
128 procs

Solver takes
97% time on
128K procs

Weak scaling limit, assuming efficiency of
100% in both physics and solver phases

problem size

Reminder: solvers evolve underneath “Ax = b”
  Advances in algorithmic efficiency rival advances in

hardware architecture
  Consider Poisson’s equation on a cube of size N=n3

  If n=64, this implies an overall reduction in flops of
~ 16 million

Year Method Reference Storage Flops

1947 GE (banded) Von Neumann &
Goldstine

n5 n7

1950 Optimal SOR Young n3 n4 log n

1971 CG-MILU Reid n3 n3.5 log n

1984 Full MG Brandt n3 n3

∇2u=f 64

64 64

*Six months is reduced to 1 second

*�

year

relative
speedup

Algorithms and Moore’s Law
  This advance took place over a span of about 36 years, or 24

doubling times for Moore’s Law
  224 ≈ 16 million ⇒ the same as the factor from algorithms alone!
�

16 million
speedup

from each

Algorithmic and
architectural

advances work
together!

Implicit methods can scale!
2004 Gordon Bell “special” prize

Cortical
bone"

Trabecular
bone"

  2004 Bell Prize in “special category” went to an implicit,
unstructured grid bone mechanics simulation
  0.5 Tflop/s sustained on 4 thousand procs of ASCI

White
  large-deformation analysis
  in production in bone mechanics lab
�

c/o M. Adams, Columbia

Transonic “Lambda” Shock, Mach contours on surfaces

  1999 Bell Prize in “special category” went to implicit,
unstructured grid aerodynamics problems
  0.23 Tflop/s sustained on 3 thousand processors of Intel’s

ASCI Red
  11 million degrees of freedom
  incompressible and compressible Euler flow
  employed in NASA analysis/design missions

to s

Implicit methods can scale!
1999 Gordon Bell “special” prize

Strong scaling of parallel AMR on advection-
diffusion problem for small (yellow), medium (green),
large (blue), and very large (red) problems sizes. Blue
curve demonstrates nearly ideal strong scaling for
0.5B element problem over a range of 256 to 32,768
cores on Ranger.

Weak scaling of parallel AMR on advection-diffusion
problem with ~131,000 elements per core. Results
demonstrate 50% parallel efficiency over a range of 1 to
62,464 cores on TACC’s Sun/AMD Ranger system.
Largest problem has ~7.9B finite elements. AMR
imposes <10% overhead over a static mesh solver.

Supported in part by DOE SciDAC TOPS, NSF PetaApps/Earth Sciences, and DOE NNSA PSAAP

Illustration of parallel dynamic AMR for problem of
modeling convection in Earth’s mantle. The figure shows
snapshots of the thermal field at three time instants (left
column) and corresponding adapted meshes (right
column). The mesh resolves the rising plumes as well as
the instabilities at the top layer. The elements span levels 4
to 9 in octree depth.

c/o O. Ghattas (UTexas) et al.

2008 Gordon Bell finalist:
implicit methods must scale!

SPMD parallelism w/domain decomposition
puts off limitation of Amdahl in weak scaling

Partitioning of the grid induces
block structure on the system
matrix (Jacobian)

Computation scales with area;
communication scales with
perimeter; ratio fixed in weak
scaling

Ω1

Ω2

Ω3

A23 A21 A22
rows assigned

to proc “2”

DD relevant to any local stencil formulation

finite differences finite elements finite volumes

•  lead to sparse Jacobian matrices
J=

node i

row i
•  however, the inverses are
generally dense; even the factors
suffer unacceptable fill-in in 3D
•  want to solve in subdomains only,
and use to precondition full sparse
problem

Estimating scalability of stencil computations
  Given complexity estimates of the leading terms of:

  the concurrent computation (per iteration phase)
  the concurrent communication
  the synchronization frequency

  And a bulk synchronous model of the architecture including:
  internode communication (network topology and protocol reflecting horizontal

memory structure)
  on-node computation (effective performance parameters including vertical

memory structure)

  One can estimate optimal concurrency and optimal execution
time
  on per-iteration basis, or overall (by taking into account any granularity-

dependent convergence rate)
  simply differentiate time estimate in terms of (N,P) with respect to P, equate to

zero and solve for P in terms of N

 Estimating 3D stencil costs (per iteration)

  grid points in each
direction n, total work
N=O(n3)

  processors in each
direction p, total procs
P=O(p3)

  memory per node
requirements O(N/P)

  concurrent execution time per
iteration A n3/p3

  grid points on side of each
processor subdomain n/p

  Concurrent neighbor commun.
time per iteration B n2/p2

  cost of global reductions in each
iteration C log p or C p(1/d)
  C includes synchronization

frequency

  same dimensionless units for
measuring A, B, C
  e.g., cost of scalar floating point

multiply-add

3D stencil computation illustration
Rich local network, tree-based global reductions

  total wall-clock time per iteration

  for optimal p, , or

 or (with),

  without “speeddown,” p can grow with n
  in the limit as

pC
p
nB

p
nApnT log),(2

2

3

3

++=

0=
∂

∂

p
T

,023 3

2

4

3

=+−−
p
C

p
nB

p
nA

CA
B
2

3

243
32

≡θ

[] [] n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠

⎞
⎜
⎝

⎛= 3
1

3
13

1

)1(1)1(1
2
3

θθ

0→C
B

n
C
Apopt ⋅⎟
⎠

⎞
⎜
⎝

⎛=
3
1

3

3D stencil computation illustration
Rich local network, tree-based global reductions

  optimal running time

 where

  limit of infinite neighbor bandwidth, zero neighbor latency ()

 (This analysis is on a per iteration basis; complete analysis

multiplies this cost by an iteration count estimate that generally
depends on n and p.)

(),log))(,(23 nCBAnpnT opt ρ
ρρ

++=

!

" =
3A
2C

$
%

&

'
(

1
3
1+ (1) *)[]

1
3 + 1) (1) *)[]

1
3#

$
%

&

'
(

0→B

⎥⎦

⎤
⎢⎣

⎡ ++= .log
3
1log))(,(const

C
AnCnpnT opt

  With tree-based (logarithmic) global
reductions and scalable nearest neighbor
hardware:
  optimal number of processors scales linearly with

problem size

  With 3D torus-based global reductions and
scalable nearest neighbor hardware:
  optimal number of processors scales as three-fourths

power of problem size (almost “scalable”)

  With common network bus (heavy
contention):
  optimal number of processors scales as one-fourth

power of problem size (not “scalable”)

Scalability results for DD stencil computations

Factoring convergence rate into estimates

  In terms of N and P, where for d-dimensional
isotropic problems, N=h-d and P=H-d, for mesh
parameter h and subdomain diameter H,
iteration counts may be estimated as follows:

Ο(P1/3) Ο(P1/2) 1-level Additive Schwarz

Ο(1) Ο(1) 2-level Additive Schwarz

Ο((NP)1/6) Ο((NP)1/4) Domain Jacobi (δ=0)
Ο(N1/3) Ο(N1/2) Point Jacobi

in 3D in 2D Preconditioning Type

  Krylov-Schwarz iterative methods typically converge in
a number of iterations that scales as the square-root of
the condition number of the Schwarz-preconditioned
system

Where do these results come from?
  Point Jacobi result is well known (see any book on the numerical

analysis of elliptic problems)
  Subdomain Jacobi result has interesting history

  Was derived independently from functional analysis, linear algebra, and
graph theory

  Schwarz theory is neatly and abstractly summarized in Section
5.2 Smith, Bjorstad & Gropp (1996) and Chapter 2 of Toselli &
Widlund (2004)
  condition number, κ ≤ ω [1+ρ(ε)] C0

2

  C0
2 is a splitting constant for the subspaces of the decomposition

  ρ(ε) is a measure of the orthogonality of the subspaces
  ω is a measure of the approximation properties of the subspace solvers

(can be unity for exact subdomain solves)
  These properties are estimated for different subspaces, different

operators, and different subspace solvers and the “crank” is turned

Comments on the Schwarz results
  Original basic Schwarz estimates were for:

  self-adjoint elliptic operators
  positive definite operators
  exact subdomain solves,
  two-way overlapping with
  generous overlap, δ=O(H) (original 2-level result was O(1+H/δ))

  Subsequently extended to (within limits):
  nonself-adjointness (e.g, convection)
  indefiniteness (e.g., wave Helmholtz)
  inexact subdomain solves
  one-way overlap communication (“restricted additive Schwarz”)
  small overlap

T
ii RR ,

1−
iA

Comments on the Schwarz results, cont.

  2-level theory requires “sufficiently fine” coarse mesh
  However, coarse space need not be nested in the fine space or in the

decomposition into subdomains

  Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

  Wave Helmholtz (e.g., acoustics) is delicate at high
frequency:
  standard Schwarz Dirichlet boundary conditions can lead to

undamped resonances within subdomains,
  remedy involves Robin-type transmission boundary conditions

on subdomain boundaries,

0=Γu

0)/(=∂∂+ Γnuu α

— Yogi Berra

1 proc

Illustration of 1-level vs. 2-level tradeoff

Newton-Krylov solver with Aztec non-restarted GMRES with 1-level domain decomposition
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver.
Coarse Solver: “Exact” = SuperLU (1 proc), “Approx” = one step of ILU (8 proc. in parallel)

Temperature iso-lines
on slice plane, velocity
iso-surfaces and
streamlines in 3D

N.45

N.24

N0

2 – Level DD
Exact Coarse
Solve

2 – Level DD
Approx. Coarse
Solve

1 – Level
DD 3D Results

512 procs

Total Unknowns

Av
g.

 It
er

at
io

ns
 p

er
 N

ew
to

n
St

ep

Thermal Convection
Problem (Ra = 1000)

c/o J. Shadid and R. Tuminaro

“Unreasonable effectiveness” of Schwarz
  When does the sum of partial inverses equal the

inverse of the sums? When the decomposition is right!

  Good decompositions are a compromise between
conditioning and parallel complexity, in practice

{ }ir
iii raAr = T

iii Arra =
Let be a complete set of orthonormal row
eigenvectors for A : or

ii
T
ii rarA Σ=

Then

i
T
ii

T
iiii

T
ii rArrrrarA 111)(−−− Σ=Σ=

and

— the Schwarz formula!

“Unreasonable effectiveness” of Schwarz, cont.

  Forward Poisson operator is localized and sparse
  Inverse operator is locally concentrated, but dense
  A coarse grid is necessary (and sufficient, for good

conditioning) to represent the coupling between a field
point and its forcing coming from nonlocal regions

Delta function, δ(x) A δ(x) A-1 δ(x)

“Unreasonable effectiveness” of Schwarz, cont.

  Green’s functions for the “good Helmholtz”
operator on the unit interval, shown with four
increasing diagonal shifts, for ξ = 0.5

  It is intuitively clear why the diagonally dominant
case is easy to precondition without a coarse grid

  This corresponds to the implicitly differenced
parabolic system, and arises commonly in practice

[-∇2 + k2] G(x, ξ) = 0

 There is no “scalable” without “optimal”
  “Optimal” for a theoretical numerical analyst means a

method whose floating point complexity grows at most
linearly in the data of the problem, N, or (more
practically and almost as good) linearly times a polylog
term

  For iterative methods, this means that the product of the
cost per iteration and the number of iterations must be O
(N logp N)

  Cost per iteration must include communication cost as
processor count increases in weak scaling, P ∝ N
  BlueGene, for instance, permits this with its log-

diameter hardware global reduction
  Number of iterations comes from condition number for

linear iterative methods; Newton’s superlinear
convergence is important for nonlinear iterations

Why optimal algorithms?
  The more powerful the computer, the greater the

importance of optimality
  though the counter argument is often employed L

  Example:
  Suppose Alg1 solves a problem in time C N2, where N is

the input size
  Suppose Alg2 solves the same problem in time C N log2 N
  Suppose Alg1 and Alg2 parallelize perfectly on a machine

of 1,000,000 processors

  In constant time (compared to serial), Alg1 can run a
problem 1,000 X larger, whereas Alg2 can run a
problem nearly 65,000 X larger

Components of scalable solvers for PDEs
  Subspace solvers

  elementary smoothers
  incomplete factorizations
  full direct factorizations

  Global linear preconditioners
  Schwarz and Schur methods
  multigrid

  Linear accelerators
  Krylov methods

  Nonlinear rootfinders
  Newton-like methods

�

alone unscalable:
either too many
iterations or too
much fill-in

opt. combins. of
subspace solvers

mat-vec algs.

vec-vec algs.
+ linear solves

Newton-Krylov-Schwarz:
a PDE applications “workhorse”

Newton
nonlinear solver

asymptotically quadratic

0)(')()(=+≈ uuFuFuF cc δ
uuu c δλ+=

Krylov
accelerator

spectrally adaptive

FuJ −=δ
}{minarg

},,,{ 2
FJxu

FJJFFVx
+=

≡∈

δ

Schwarz
preconditioner
parallelizable

FMuJM 11 −− −=δ

i
T
ii

T
ii RJRRRM 11)(−− ∑=

“Secret sauce” #1:
iterative correction w/ each step O(N)

  The most basic idea in iterative methods for Ax = b

  Evaluate residual accurately, but solve approximately,
where is an approximate inverse to A

  A sequence of complementary solves can be used, e.g.,
with first and then one has

)(1 AxbBxx −+← −

)]([1
1

1
2

1
2

1
1 AxbABBBBxx −−++← −−−−

2B1B

1−B

RRARRB TT 11
2)(−− =

)(1AB−

  Scale recurrence, e.g., with ,
leads to multilevel methods

  Optimal polynomials of lead to various
preconditioned Krylov methods

smoother

Finest Grid

First Coarse Grid
coarser grid has fewer cells

 (less work & storage)

Restriction
transfer from fine
to coarse grid

Recursively apply this
idea until we have an
easy problem to solve

A Multigrid V-cycle

Prolongation
transfer from coarse
to fine grid

“Secret sauce” #2:
treat each error component in optimal subspace

c/o R. Falgout, LLNL

“Secret sauce” #3:
skip the Jacobian

  In the Jacobian-Free Newton-Krylov (JFNK) method
for F(u) = 0 , a Krylov method solves the linear Newton
correction equation, requiring Jacobian-vector
products

  These are approximated by the Fréchet derivatives

 (where is chosen with a fine balance between

approximation and floating point rounding error) or
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed

  One builds the Krylov space on a true F′(u) (to within
numerical approximation)

)]()([1)(uFvuFvuJ −+≈ ε
ε

ε Carl Jacobi

Secret sauce #4:
use the user’s solver to precondition

  Almost any code to solve F(u) = 0 computes
a residual and invokes some process to
compute an update to u based on the
residual

  Defines a weakly converging nonlinearly
method

  M is, in effect, a preconditioner and can be
applied directly within a Jacobian-free
Newton context

  This is the “physics-based preconditioning”
strategy discussed in the E3 report

uuFM k δ)(:
uuu kk δ+←+1

Example: fast spin-up of ocean circulation model
using Jacobian-free Newton-Krylov

  State vector, u(t)
  Propagation operator (this is any

code) Φ (u,t): u(t) = Φ (u(0),t)
  here, single-layer quasi-geostrophic ocean

forced by surface Ekman pumping,
damped with biharmonic hyperviscosity

  Task: find state u that repeats every
period T (assumed known)

  Difficulty: direct integration (DI) to
find steady state may require
thousands of years of physical time

  Innovation: pose as Jacobian-free
NK rootfinding problem, F(u) = 0,
where F(u) ≡ u - Φ (u(0),T)
  Jacobian is dense, would never think of

forming!

converged streamfunction

difference between DI and
NK (10-14)

Example: fast spin-up of ocean circulation model
using Jacobian-free Newton-Krylov

2-3 orders of
magnitude
speedup of
Jacobian-free
NK relative to
Direct
Integration
(DI)

OGCM:
Helfrich-
Holland
integrator

Implemented
in PETSc as
undergraduate
research
project

c/o T. Merlis (Columbia’05, now Caltech, Dept. Environmental Science & Engineering)

Jacobian-free Newton-Krylov
  In the Jacobian-Free Newton-Krylov (JFNK) method, a

Krylov method solves the linear Newton correction
equation, requiring Jacobian-vector products

  These are approximated by the Fréchet derivatives

 (where is chosen with a fine balance between

approximation and floating point rounding error) or by
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed (except for
preconditioning)

  One builds the Krylov space on a true F’(u) (to within
numerical approximation)

)]()([1)(uFvuFvuJ −+≈ ε
ε

ε

How to accommodate preconditioning
  Krylov iteration is expensive in memory and in

function evaluations, so subspace dimension k must be
kept small in practice, through preconditioning the
Jacobian with an approximate inverse, so that the
product matrix has low condition number in

  Given the ability to apply the action of to a
vector, preconditioning can be done on either the left,
as above, or the right, as in, e.g., for matrix-free:

)]()([1 11 uFvBuFvJB −+≈ −− ε
ε

bBxAB 11)(−− =
1−B

Philosophy of Jacobian-free NK
  To evaluate the linear residual, we use the true F’(u) , giving a

true Newton step and asymptotic quadratic Newton
convergence

  To precondition the linear residual, we do anything convenient
that uses understanding of the dominant physics/mathematics
in the system and respects the limitations of the parallel
computer architecture and the cost of various operations:
  Jacobian blocks decomposed for parallelism (Schwarz)
  Jacobian of lower-order discretization
  Jacobian with “lagged” values for expensive terms
  Jacobian stored in lower precision
  Jacobian of related discretization
  operator-split Jacobians
  physics-based preconditioning

 Nonlinear Schwarz methods
  Nonlinear Schwarz replaces linear solves with

Newton in inner and outer iterations
  It replaces with a new nonlinear system

possessing the same root,
  Define a correction to the partition (e.g.,

subdomain) of the solution vector by solving the
following local nonlinear system:

 where is nonzero only in the
components of the partition

  Then sum the corrections: to get
an implicit function of u

0)(=uF
0)(=Φ u
thi

thi

)(uiδ

0))((=+ uuFR ii δ
n

i u ℜ∈)(δ

)()(uu ii δ∑=Φ

 Nonlinear Schwarz – picture

u

F(u)

Ri

1
 1
 1
 1

0 0

Riu RiF

 Nonlinear Schwarz – picture

u

F(u)

Ri

Rj

1
 1
 1
 1

0 0

1
 1
 1
 1

0 0 RiF Riu

Rju RjF

 Nonlinear Schwarz – picture

u

F(u)

Ri

Rj

1
 1
 1
 1

0 0

1
 1
 1
 1

0 0 Riu RiF

Rju RjF

Fi’(ui)

RiF+RjF

δiu+δju

 Nonlinear Schwarz, cont.
  It is simple to prove that if the Jacobian of F(u) is

nonsingular in a neighborhood of the desired root
then and have the same unique
root

  To lead to a Jacobian-free Newton-Krylov algorithm
we need to be able to evaluate for any :
  The residual
  The Jacobian-vector product

  Remarkably, (Cai-Keyes, 2000) it can be shown that

 where and
  All required actions are available in terms of !

0)(=Φ u

nvu ℜ∈,
)()(uu ii δ∑=Φ

0)(=uF

vu ')(Φ

JvRJRvu ii
T
ii)()(1' −∑≈Φ

)(' uFJ = T
iii JRRJ =

)(uF

Driven cavity in velocity-vorticity coords

02 =
∂

∂
−∇−
y

u ω

02 =
∂

∂
+∇−
x

v ω

0Gr2 =
∂

∂
−

∂

∂
+

∂

∂
+∇−

x
T

y
v

x
u ωω

ω

0)(Pr2 =
∂

∂
+

∂

∂
+∇−

y
Tv

x
TuT

x-velocity

y-velocity

vorticity

internal energy

hot cold

Experimental example of nonlinear Schwarz

 Vanilla Newton’s method Nonlinear Schwarz

Difficulty at
critical Re

Stagnation
beyond

critical Re

Convergence
for all Re

Multiphysics coupling
  Domain decomposition is fundamentally algebraic
  It does not care (except in the preconditioner) whether

the coupled subproblems are from different
subdomains, or different equations sets defined over a
common domain

  Hence domain decomposition methods suggest
methods for attacking multiphysics problems

  Consider (in the next three slides) the two standard
means of solving multiphysics problems, by nested
elimination and by block nonlinear Gauss-Seidel, and
then nonlinear Schwarz

 Multiphysics coupling: partial elimination
  Consider system partitioned by physics as

  Can formally solve for in

  Then second equation is
  Jacobian

can be applied to a vector in matrix-free manner

⎩
⎨
⎧

=

=

0),(
0),(

212

211

uuF
uuF

0)(=uF

0),(211 =uuF
)(21 uGu ≡

0)),((222 =uuGF

2

2

21

2

2

2

u
F

u
G

u
F

du
dF

∂

∂
+

∂

∂

∂

∂
=

1u

 Multiphysics coupling: nonlinear GS

  In previous notation, given initial iterate
  For k=1, 2, …, until convergence, do

  Solve for v in
  Solve for w in

  Then
0),(2 =wvF !

u1
0,u2

0{ }

0),(1
21 =−kuvF

!

u1
k,u2

k{ } = v,w{ }

 Multiphysics coupling: nonlinear Schwarz

  Given initial iterate
  For k=1, 2, …, until convergence, do

  Define by
  Define by

  Then solve in matrix-free manner

  Jacobian:

  Finally

!

u1
k,u2

k{ } = v,w{ }

!

u1
0,u2

0{ }

0),(1
21

1
11 =+ −− kk uuuF δ1211),(uuuG δ≡

0),(2
1

2
1

12 =+−− uuuF kk δ2212),(uuuG δ≡

⎩
⎨
⎧

=

=

0),(
0),(

2

1

vuG
vuG

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂

∂
⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
∂

∂
⎟
⎠

⎞
⎜
⎝

⎛
∂

∂

≈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂
∂

∂

∂

∂

−

−

I
u
F

v
F

v
F

u
FI

v
G

u
G

v
G

u
G

2
1

2

1
1

1

22

11

SciDAC’s Fusion Simulation Project:
support of the international fusion program

+

J. Fusion Energy 28: 1-59 (2007)

ITER: $11B
“the way”

Fusion by 2017; criticality by 2022

“Big Iron” meets “Big Copper”

Fusion Simulation
Project

June 2007

0)(=Φ u

Scaling fusion simulations up to ITER

c/o S. Jardin, PPPL

1012 needed
(explicit
uniform
baseline)

 International
Thermonuclear
Experimental
Reactor

 2017 – first
experiments, in
Cadaraches,
France

Small
tokamak

Large
tokamak

Huge
tokamak

  1.5 orders: increased processor speed and efficiency
  1.5 orders: increased concurrency
  1 order: higher-order discretizations

  Same accuracy can be achieved with many fewer elements

  1 order: flux-surface following gridding
  Less resolution required along than across field lines

  4 orders: adaptive gridding
  Zones requiring refinement are <1% of ITER volume and

resolution requirements away from them are ~102 less severe

  3 orders: implicit solvers
  Mode growth time 9 orders longer than Alfven-limited CFL

Where to find 12 orders of magnitude in 10 years?
H

ar
dw

ar
e:

 3

So
ftw

ar
e:

 9

 Algorithmic
improvements bring

yottascale (1024)
calculation down to

petascale (1015)!

  Increased processor speed
  10 years is 6.5 Moore doubling times

  Increased concurrency
  BG/L is already 217 procs, MHD now routinely at ca. 212

  Higher-order discretizations
  low-order preconditioning of high-order discretizations

  Flux-surface following gridding
  in SciDAC, this is ITAPS; evolve mesh to approximately follow flux

surfaces

  Adaptive gridding
  in SciDAC, this is APDEC; Cartesian AMR

  Implicit solvers
  in SciDAC, this is TOPS; Newton-Krylov w/multigrid

preconditioning

Comments on ITER simulation roadmap

Resistive MHD prototype implicit solver
  Magnetic reconnection: the breaking

and reconnecting of oppositely
directed magnetic field lines in a
plasma, replacing hot plasma core
with cool plasma, halting the fusion
process

  Replace explicit updates with implicit
Newton-Krylov from SUNDIALS with
factor of ~5× in execution time

Current (J = r £ B)

J. Brin et al., “Geospace Environmental Modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 106 (2001) 3715-3719.

c/o D. Reynolds, UCSD

Resistive MHD: implicit solver, ex #2

 Magnetic reconnection:
previous example was
compressible – primitive
variable; this example is
incompressible –
streamfunction/vorticity

 Replace explicit updates with
implicit Newton-Krylov from
PETSc with factor of ~5× in
speedup

c/o F. Dobrian, ODU

“What changed were simulations that showed that the new
ITER design will, in fact, be capable of achieving and

sustaining burning plasma.”

 – Ray Orbach,
Former Undersecretary of Energy

The U.S. role in multi-billion-dollar international projects will
increasingly depend upon large-scale simulation, as exemplified

by the 2003 Congressional testimony of Ray Orbach, above.

  Engage at a higher-level than Ax=b
  Newton-Krylov-Schwarz/MG on coupled nonlinear system

  Sensitivity analyses
  validation studies

  Stability analyses
  “routine” outer loop on steady-state solutions

  Optimization
  parameter identification
  design of facilities (accelerators, tokamaks, power plants,

etc.)
  control of experiments

TOPS’ wishlist for MHD collaborations —
“Asymptopia”

Hardware Infrastructure

A
R
C
H
I
T
E
C
T
U
R
E
S

Applications

A “perfect storm” for scientific simulation

scientific models

numerical algorithms

computer architecture

scientific software engineering

(dates are symbolic)

1686

1947

1976

1992

TOPS dreams that users will…

  Understand range of algorithmic options w/
tradeoffs
e.g., memory vs. time, comp. vs. comm., inner iteration

work vs. outer

  Try all reasonable options “easily”
without recoding or extensive recompilation

  Know how their solvers are performing
with access to detailed profiling information

  Intelligently drive solver research
e.g., publish joint papers with algorithm researchers

  Simulate truly new physics free from solver limits
e.g., finer meshes, complex coupling, full nonlinearity

User’s
Rights

“Co-authors” of this manifesto

  1982 William Gropp, UIUC
  1984 Mitchell Smooke, Yale
  1984 Tony Chan, UCLA
  1989 Xiao-Chuan Cai, CU-Boulder
  1990 Barry Smith, Argonne
  1991 David Young, Boeing
  1992 Dana Knoll, Idaho Nat Lab
  1992 M. Driss Tidriri, Iowa State
  1993 V. Venkatakrishnan, Boeing
  1993 Dimitri Mavriplis, UWyoming

  1995 C. Timothy Kelley, NCSU
  1995 Omar Ghattas, UT-Austin
  1995 Lois C. McInnes, Argonne
  1996 Dinesh Kaushik, Argonne
  1997 John Shadid, Sandia
  1997 Kyle Anderson, UT-C
  1997 Carol Woodward, LLNL
  2001 Florin Dobrian, ODU
  2002 Daniel Reynolds, UCSD
  2006 Yuan He, Columbia

(with the year in which we began substantive collaborations)

EOF!

