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The History of CFD

History of CFD in Van Leer’s View

3



National Institute for Aerospace, August 6–8, 2012A. Jameson

The History of CFD

Emergence of CFD
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Some significant developments in the ‘60s:
• birth of commercial jet transport – B707 & DC-8
• intense interest in transonic drag rise phenomena
• lack of analytical treatment of transonic aerodynamics
• birth of supercomputers – CDC6600 

DC-8

Sonic line

Shock wave

Boundary layer

M < 1 M > 1

Transonic Flow CDC6600

• In 1960 the underlying principles of fluid dynamics and the formulation of the 
governing equations (potential flow, Euler, RANS) were well established

• The new element was the emergence of powerful enough computers to make 
numerical solution possible – to carry this out required new algorithms

• The emergence of CFD in the 1965–2005 period depended on a combination of 
advances in computer power and algorithms.
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The History of CFD

Multi-Disciplinary Nature of CFD
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The History of CFD

Hierarchy of Governing Equations
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The History of CFD

50 Years of CFD
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• 1960–1970: Early Developments
Riemann-based schemes for gas dynamics (Godunov), 2nd-order dissipative schemes for 
hyperbolic equations (Lax-Wendroff), efficient explicit methods for Navier-Stokes 
(MacCormack), panel method (Hess-Smith)

• 1970–1980: Potential Flow Equations
type-dependent differencing (Murman-Cole), complex characteristics (Garabedian), 
rotated difference (Jameson), multigrids (Brandt), complete airplane solution 
(Glowinsky)

• 1980–1990: Euler and Navier-Stokes Equations
oscillation control via limiters (Boris-Book), high-order Godunov scheme (van Leer), 
flux splitting (Steger-Warming), shock capturing via controlled diffusion (Jameson-
Schmit-Turkel), approximate Riemann solver (Roe), total variation diminishing 
(Harten), multigrids (Jameson, Ni), solution of complete airplane (Jameson-Baker-
Weatherill)

• 1990–2000: Aerodynamic Shape Optimization
adjoint based control theory

• 2000–2010: Discontinuous Finite Element Methods
Discontinuous Galerkin, Spectral Difference, Flux Reconstruction, etc.



National Institute for Aerospace, August 6–8, 2012A. Jameson

The History of CFD

Advances in Computer Power
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1970 CDC6600 1 Megaflops 106

1980 Cray 1
Vector Computer 100 Megaflops 108

1994 IBM SP2
Parallel Computer 10 Gigaflops 1010

2007 Linux Clusters 100 Teraflops 1014

2007
(affordable) Box Cluster in my house

Four 3 GHz dual core CPUs (24 Gigaflops peak)
$10,000

2.5 Gigaflops 2.5×109

2009 HP Pavilion Quadcore Notebook
$1,099 1 Gigaflops 109

2011 MacBook Pro Quadcore Laptop
$2,099 2.5 Gigaflops 2.5×109
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Complexity of CFD

The Cost of the Degrees of Freedom
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Fluid dynamic problems involve polynomials with large N and fairly large p

Complexity of Fluid Dynamic Simulations - Explicit Schemes

• With N ≈ n3 mesh points in 3D and explicit time stepping, each time step 
requires O(n3) operations

• The time step of a stable scheme is proportional to the mesh interval h 
divided by the wave speed, and h ≈ 1/n, giving complexity Cn4 ≈ N4/3 with a 
constant C depending on the algorithm

Complexity of Fluid Dynamic Simulations - Implicit Schemes

• An implicit scheme requires matrix inversion at each time step with 
complexity NB2 where B is the bandwidth ≈ n2, so the cost of a step is O(n7)

• The time step is not limited by the mesh interval, so the number of time steps 
is independent of n, giving total complexity ≈ n7
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Complexity of CFD

Grid Size for a Transport Aircraft Wing
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Complexity of CFD

Complexity of CFD in the ‘70s

12

• The complexity of a 3D prediction of transonic flow is O(n4) and reasonable 
accuracy can be obtained with n ≈ 100

• Calculations could be completed in O(108) operations with a CDC 6600 
which could achieve ≈ 106 flops

• Thus a useful 3D calculation might be possible in O(102) seconds

• The author recognized this in 1971

• Actually FLO22 (Jameson and Caughey), which was the first program 
which could actually predict transonic flow over a swept wing with 
engineering accuracy, required about 10,000 seconds for a solution
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Complexity of CFD

Complexity of CFD in the ‘80s
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• 800,000 mesh cells for a viscous mesh around a wing

• 5,000 flops per solution step using FLO107

• 300 steps for the solution to converge

• (8 × 105) × (5 × 103) × (3 × 102) = 1.2 × 1012

Roughly 1012 flops for RANS simulation on 0.8 million mesh cells

With a 1 Gigaflop computer, solution takes about 1,000 seconds...

... About 400 seconds with a 2011 MacBook Pro quadcore at 2.5 Gflops



National Institute for Aerospace, August 6–8, 2012A. Jameson

Complexity of CFD

CFD Complexity for Turbulent Flow Simulations
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• For a turbulent flow with a Reynolds number Re, the length scale of the smallest 
eddies relative to the integral length scale ≈ Re–3/4 (Kolmogorov, 1943)

• With a comparable time step, the complexity of the simulations ≈ Re3

• For a jumbo jet such as the Airbus A380, Re ≈ 108

• Direct Numerical Simulation (DNS) of the flow over the A380 has a complexity 
≈ 1024 operations

• With a Petaflop computer (IBM Roadrunner, 2008), DNS of the A380 has a 
complexity of about 109 seconds

 About 30 Years!
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Usage of CFD – Boeing's Experience

Impact of CFD on Configuration Lines & Wind Tunnel Testing
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Usage of CFD – Boeing's Experience

Impact of CFD on B737-300 Program
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Usage of CFD – Boeing's Experience

Computational Methods at Boeing
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TRANAIR:

• Full Potential with directly coupled Boundary Layer
• Cartesian solution adaptive grid
• Drela lag-dissipation turbulence model
• Multi-point design/optimization

Navier-Stokes Codes:

• CFL3D – Structured Multiblock Grid
• TLNS3D – Structured Multiblock Grid, Thin Layer
• OVERFLOW – Overset Grid

N-S Turbulence Models:

• S-A Spalart-Allmaras
• Menter’s k-ω SST
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Usage of CFD – Boeing's Experience

CFD Contributions to B787
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Usage of CFD – Airbus' Experience

CFD Development for Aircraft Design
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Usage of CFD – Airbus' Experience

Block-Structured RANS Capability: FLOWer

21



National Institute for Aerospace, August 6–8, 2012A. Jameson

Usage of CFD – Airbus' Experience

Unstructured RANS Capability: TAU
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Usage of CFD – Airbus' Experience

Numerical Flow Simulation
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Usage of CFD – Airbus' Experience

CFD Contribution to A380
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Usage of CFD

Wing Optimization Using SYN107
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State of the Art Wing Design 
Process in 2 Stages, starting 
from Garabedian-Korn Airfoil and 
NASA Common Research Model
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Usage of CFD

Wing Optimization Using SYN107
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State of the Art Wing Design 
Process in 2 Stages, starting 
from Garabedian-Korn Airfoil and 
NASA Common Research Model
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Current Status & Future Trends

The Current Status of CFD

28

• Worldwide commercial and government codes are based on 
algorithms developed in the ‘80s and ‘90s

• These codes can handle complex geometry but are generally 
limited to 2nd order accuracy

• They cannot handle turbulence without modeling

• Unsteady simulations are very expensive, and questions over 
accuracy remain
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Current Status & Future Trends

The Future of CFD (?)
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CFD has been on a plateau for the past 15 years

• Representations of current state of the art:
‣ Formula 1 cars
‣ Complete aircrafts

• The majority of current CFD methods are not adequate for vortex 
dominated and transitional flows:

‣ Rotorcraft
‣ High-lift systems
‣ Formation flying
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Current Status & Future Trends

Large-Eddy Simulation
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Rapid advances in computer hardware should make LES feasible 
within the foreseeable future for industrial problems at high 
Reynolds numbers. To realize this goal requires

• high-order algorithms for unstructured meshes (complex geometries)

• Sub-Grid Scale models applicable to wall bounded flows

• massively parallel implementation

The number of DoF for an LES of turbulent flow over an airfoil scales as 
Rec1.8 (resp. Rec0.4) if the inner layer is resolved (resp. modeled)

Chapman (1979), AIAA J. 17(12)
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Overview of Numerical Methods

Typical Requirements of CFD
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Traditional numerical schemes for engineering problems 
are too dissipative and do not provide sufficient 

accuracy for LES and DNS 

• Accuracy:      solution must be right

• Small numerical dissipation:  unsteady flow features

• Unstructured grids:    complex geometries

• Numerical flux:     wave propagation problems

• High resolution capabilities:  transitional and turbulent flows

• Efficiency:      code parallelism

• ...
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Overview of Numerical Methods

Classic Numerical Methods
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Finite Difference
• Structured
• High-order
• Numerical flux

Continuous FE
• Unstructured
• High-order
• No numerical flux

Finite Volume
• Unstructured
• Low-order
• Numerical flux
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Overview of Numerical Methods

Disontinuous FE
• Unstructured
• High-order
• Numerical flux

Classic Numerical Methods

32

Finite Difference
• Structured
• High-order
• Numerical flux

Continuous FE
• Unstructured
• High-order
• No numerical flux

Finite Volume
• Unstructured
• Low-order
• Numerical flux
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Overview of Numerical Methods

A Review of the Literature

33

Past Research on DG Schemes:
• Modern development of DG schemes for hyperbolic conservation laws stems 

from the work of Cockburn & Shu [1989a,1989b,1990,1998,2001]

Recent Research:
Attempts to reduce complexity and avoid quadrature:
• Spectral Difference (SD) scheme by Kopriva & Kolias [1996], Liu, Vinokur & 

Wang [2006]
• Nodal Discontinuous Galerkin (NDG) scheme by Atkins & Shu [1998], 

Hesthaven & Warburton [2007]
• Flux Reconstruction (FR) scheme by Huynh [2007,2009]
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The FR Methodology

Introduction

35

• The following presentation emphasizes development of Huynh's FR 
approach, and energy stability

• Energy stability analysis versus Fourier stability analysis

‣ Energy method is more general and rigorous

‣ Energy method enables stability proofs for all orders of accuracy

‣ Energy method applies to non-uniform meshes

‣ Fourier analysis provides more detailed information about the distribution 
of dispersive and diffusive errors

‣ Fourier analysis identifies super accuracy for linear problems

The Energy Stable FR scheme (ESFR):
• Until recently, stable FR schemes identified on an ad hoc basis

• We have identified a range of correction functions that guarantee linear 
stability for all orders of accuracy

• Achieved by extending Jameson’s proof of stability of an SD scheme for 
the linear advection equation for all orders of accuracy
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Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The Flux Reconstruction Scheme

36

fD
h =

n�

j=1

fD
j lj(x)uh =

n�

j=1

uj lj(x)

The solution is locally represented by Lagrange polynomial of degree n – 1 on the solution points:

∂ui

∂t
+

� n�

j=1

fD
j
dlj
dx

(xi) +∆L
dhL

dx
(xi) +∆R

dhR

dx
(xi)

�
= 0

The continuous flux is finally differentiated at the solution points and the solution is advanced in time

The flux is discontinuous and needs to be corrected in a suitable way 

∆L = �fL − fD
h (−1) ∆R = �fR − fD

h (1)

hL(−1) = 1, hL(1) = 0 hR(1) = 1, hR(−1) = 0

The continuous flux is obtained from the discontinuous counterpart by adding the correction functions 
of degree n weighted by the flux corrections 

fC
h =

n�

j=1

fD
j lj(x) + hL(x)∆L + hR(x)∆R
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Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated

37

The solution is locally represented by Lagrange polynomial of degree n-1 on the n 
solution points:

uh =
n�

j=1

uj lj(x)

u3

u2

u1

x1 x2 x3
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Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated

38

The discontinuous flux is constructed

fD
h =

n�

j=1

fD
j lj(x)

fD
1

fD
2 fD

3

x1 x2 x3
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Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated

39

Solution is evaluated at element boundaries

uL uR

uR =
n�

j=1

uj lj(+1)uL =
n�

j=1

uj lj(−1)

x1 x2 x3
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Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated

40

The common interface flux is computed from multiply defined values at each 
interface (FV-type numerical flux such as approximate Riemann flux)

�fR

�fL

x1 x2 x3
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Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated

41

The common interface flux is computed from multiply defined values at each 
interface (FV-type numerical flux such as approximate Riemann flux)

�fR

�fL

x1 x2 x3
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Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated

42

hL(−1) = 1, hL(1) = 0

Correction functions of degree n are introduced

1

�fR

�fL

x1 x2 x3
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Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated

43

∆LhL(x)

The correction functions are scaled

ΔL

ΔL

∆L = �fL − fD
h (−1)

�fR

�fL

x1 x2 x3



National Institute for Aerospace, August 6–8, 2012A. Jameson

Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated

44

f∗
h =

n�

j=1

fD
j lj(x) + hL(x)∆L

The correction is added to the discontinuous flux

x1 x2 x3
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Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated
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hR(1) = 1, hR(−1) = 0

The right boundary is corrected the same way

1

x1 x2 x3
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Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated
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∆RhR(x)

The correction is scaled...

ΔR

ΔR

∆R = �fR − fD
h (+1)

x1 x2 x3
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The FR Methodology

The FR Scheme Graphically Illustrated
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fC
h =

n�

j=1

fD
j lj(x) + hL(x)∆L + hR(x)∆R

And added to the discontinuous flux

x1 x2 x3



National Institute for Aerospace, August 6–8, 2012A. Jameson

Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

The FR Methodology

The FR Scheme Graphically Illustrated
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fC
h =

n�

j=1

fD
j lj(x) + hL(x)∆L + hR(x)∆R

Total approximate continuous flux

x1 x2 x3
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The FR Methodology

The FR Scheme Graphically Illustrated
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∂fC

∂x
(xi) =

n�

j=1

fD
j
dlj
dx

(xi) +∆L
dhL

dx
(xi) +∆R

dhR

dx
(xi)

The divergence of the flux is evaluated at the solution points

x1 x2 x3
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The FR Methodology

The FR Scheme Graphically Illustrated
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∂ui

∂t
+

� n�

j=1

fD
j
dlj
dx

(xi) +∆L
dhL

dx
(xi) +∆R

dhR

dx
(xi)

�
= 0

The solution is advanced in time

x1 x2 x3
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Vincent, et al. (2010). J. Sci. Comput., 47(1); Vincent, et al. (2011). J. Comput. Phys., 230(22)

The FR Methodology

ηp(c) =
c(2p+ 1)(app!)2

2

where the correction functions in terms of Legendre polynomials are

with a single parameter c

hR =
(+1)p

2

�
Lp +

�
ηp(c)Lp−1 + Lp+1

1 + ηp(c)

��
hL =

(−1)p

2

�
Lp −

�
ηp(c)Lp−1 + Lp+1

1 + ηp(c)

��

∂ui

∂t
+

� n�

j=1

fD
j
dlj
dx

(xi) +∆L
dhL

dx
(xi) +∆R

dhR

dx
(xi)

�
= 0

Energy Stability of the FR Scheme

51

The FR method defines a family of energy stable schemes in the norm

||UδD||p,2 =

�
N�

n=1

� xn+1

xn

(UδD
n )2 +

c

2
(Jn)2p

�
∂pUδD

n

∂xp

�2

dx

�1/2

The schemes have the form
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The FR Methodology

A Family of Energy Stable Schemes

52

Nodal DG:

gL =
(−1)p

2
[Lp − Lp+1] , gR =

(+1)p

2
[Lp + Lp+1]

c = 0 ⇒ ηp = 0

Spectral Difference:

c =
2p

(2p+ 1)(p+ 1)(app!)2
⇒ ηp =

p

p+ 1

gL =
(−1)p

2
(1− x)Lp, gR =

(+1)p

2
(1 + x)Lp

G2 Scheme by Huynh [2007]:

c =
2(p+ 1)

(2p+ 1)p(app!)2
⇒ ηp =

p+ 1

p

gL =
(−1)p

2

�
Lp −

(p+ 1)Lp−1 + pLp+1

2p+ 1

�
, gR =

(+1)p

2

�
Lp +

(p+ 1)Lp−1 + pLp+1

2p+ 1

�

Ac
cu

ra
cy

A
llowable T

im
e-Step
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54

N=6

N=2
60×60 DoF



National Institute for Aerospace, August 6–8, 2012A. Jameson

Applications

N=5: 100×200×10 DoF

Temporal Mixing-Layer

Numerical Dissipation

54

N=6

N=2
60×60 DoF
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Applications

Numerical Dissipation
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N=6, 60×60×12 DoF

Iso-Q

Vorticity magnitude
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Vorticity magnitude
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Applications

Cylinder: N=4, 32×32, linear vs. cubic

Sphere: N=3, linear vs. quadratic

High-Order Boundaries
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Applications

SD scheme, N=4

Iso-Q colored by Ma

Transitional Flow over SD7003 Airfoil
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*1.7×106 DoF
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Transitional Flow over SD7003 Airfoil
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Re=6×104, AoA=4°, 2.2×107 DoF

Freestream 
Turbulence

Separation
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Radespiel
et al.

Ol et al.
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Uranga
et al.

Present
ILES*

0.08% 0.30 0.53 0.64

0.10% 0.18 0.47 0.58

0% 0.23 0.55 0.65

0% 0.23 0.51 0.60

0% 0.23 0.53 0.64

Experiments in green

*1.7×106 DoF

16 hours on 16 C2070s!

128 hours ( > 5 days) 
on 16 Xeon x5670 CPUs
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Study of Flapping Wing Sections
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NACA0012, Re=1850, Ma=0.2,
St=1.5, ω=2.46, h=0.12c

Experiment (Jones, et al.)
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Structural LES Modeling

Explicit Filtering in the SD Element

60

1 2 3 4 5

1 2 3 4

Solution Points Flux Points

1D element Solution  Points
Flux Points

2D element

Key issues:
• non-uniform and staggered distribution of points
• the filter stencil shall not lie across elements
• filter width shall be prescribed and constant

Filtering Strategy:
1. The filtered solution is computed at solution points
2. The SGS model term is evaluated at solution points
3. The SGS model term is extrapolated at flux points via Lagrange basis
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Vasilyev, et al. (1998). J. Comput. Phys. 146(1); Berland, et al. (2007). J. Comput. Phys. 224(2); Sagaut, Grohens (1999). Int. J. 
Numer. Meth. Fl. 31(8)

Structural LES Modeling

Discrete Filtering Operators

61

1 2 3 4 5

1 2 3 4

Solution Points Flux Points

The filtering operator for the 1D standard element is defined as

The kernel of the above discrete filter can be written as

Δ=1/N is assumed to be the actual resolution within the SD element

φs =
N�

i=1

ws
iφi, (s = 1, . . . , N)

�Gs(k) =
N�

i=1

ws
i exp(−jβs

i k∆), with βs
i =

ξi − ξs
∆
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Structural LES Modeling

The Restriction-Prolongation Filter

62

Sharp cutoff in modal space:
The solution is first projected on a lower order polynomial (restriction step) 
and then extrapolated back to the original solution points (prolongation step)
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Structural LES Modeling

The Restriction-Prolongation Filter
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Sharp cutoff in modal space:
The solution is first projected on a lower order polynomial (restriction step) 
and then extrapolated back to the original solution points (prolongation step)
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Structural LES Modeling

Discrete Filters by Gauss Quadrature
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Gauss-Legendre quadrature points:
• The discrete filter is obtained by analytical integration of a selected filter kernel
• Cutoff is enforced iteratively by checking the filter’s 2nd moment in physical space



National Institute for Aerospace, August 6–8, 2012A. Jameson

Lodato, Castonguay, Jameson (2011), CTR Annual Research Briefs; Vasilyev et al. (1998), J. Comput. Phys., 146(1)

Structural LES Modeling

Discrete Filters for Arbitrary Points
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Generalized method of Vasilyev et al. (1998):
• Value and slope at cutoff are enforced using a selected filter kernel (2)
• Higher moments are set to zero (N-3) + preservation of constant variable (1)
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LES Computations

66

Wall-Resolved Turbulent Channel Flow

*Moser, et al. (1999). Phys. Fluids, 11(4); Lodato, et al. (2009). Phys. Fluids, 21(3); Premasuthan, et al. (2009). AIAA P., 2009-3785
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LES Computations
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Wall-Resolved Turbulent Channel Flow

*Moser, et al. (1999). Phys. Fluids, 11(4); Lodato, et al. (2009). Phys. Fluids, 21(3); Premasuthan, et al. (2009). AIAA P., 2009-3785
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Lodato, Castonguay, Jameson (2011), CTR Annual Research Briefs; Lodato, et al. (2009). Phys. Fluids, 21(3)

LES Computations

67

Wall-Resolved Turbulent Channel Flow

Reτ = 590Reτ = 180 Reτ = 395
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Structural LES Modeling

A Wall-Modeling Strategy

68

Breuer and Rodi (1996)
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Moser, et al. (1999). Phys. Fluids, 11(4); Hoyas, Jiménez (2006). Phys. Fluids, 18; Breuer, Rodi (1996)

LES Computations

69

Wall-Modeled Turbulent Channel Flow

LES with SD+WSM+LW
DNS Moser, et al., 1999 (Reτ 590)
DNS Hoyas, Jiménez, 2006 (Reτ 2000)
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LES Computations

70

Wall-Modeled Turbulent Channel Flow

Reτ = 2000

u at y+=100

Reτ = 590

u at y+=100
Wall-Resolved Wall-Modeled
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LES Computations

Flow Past Square Cylinder: Re = 21400
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• Time integration: RK3
• Nº of elements:  35760 (2.3×106 DoF)
• Grid dimensions: 21D×12D×3.2D
• Reynolds:   21400
• Mach:    0.3
• Statistics:   16 T0
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• Time integration: RK3
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Flow past a Square Cylinder: ReD = 21400

Pr
el

im
in

ar
y 

re
su

lts
 (

wo
rk

 in
 p

ro
gr

es
s)

-3

-2

-1

 0

 1

 2

 3

 0  1  2  3  4  5

y/
D

x/
D 

= 
1.0

x/
D 

= 
1.5

x/
D 

= 
2.0

x/
D 

= 
2.5

x/
D 

= 
3.0

�u�/Ub

-3

-2

-1

 0

 1

 2

 3

 0  0.4  0.8  1.2  1.6

y/
D

x/
D 

= 
1.0

x/
D 

= 
1.5

x/
D 

= 
2.0

x/
D 

= 
2.5

x/
D 

= 
3.0

�u�u��/U2
b

-3

-2

-1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8

y/
D

x/
D 

= 
1.0

x/
D 

= 
1.5

x/
D 

= 
2.0

x/
D 

= 
2.5

x/
D 

= 
3.0

�u�v��/U2
b

iso-Q colored by velocity



National Institute for Aerospace, August 6–8, 2012A. Jameson

Summary and Conclusions

73

Predicting the future is generally ill advised.
However, the following are the author’s opinions:
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• The early development of CFD in the Aerospace Industry was primarily driven by the 
need to calculate steady transonic flows: this problem is quite well solved 

• CFD has been on a plateau for the last 15 years with 2nd-order accurate FV methods for 
the RANS equations almost universally used in both commercial and government codes 
which can treat complex configurations

• These methods cannot reliably predict complex separated, unsteady and vortex 
dominated flows

• Ongoing advances in both numerical algorithms and computer hardware and software 
should enable an advance to LES for industrial applications within the foreseeable future

• Research should focus on high-order methods with minimal numerical dissipation for 
unstructured meshes to enable the treatment of complex configurations

• Eventually DNS may become feasible for high Reynolds number flows

hopefully with a smaller power requirement than a wind tunnel 

Predicting the future is generally ill advised.
However, the following are the author’s opinions:
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