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Parallel adaptive high order numerical methods  

New/improved turbulence models

Not 

Not 

Reasons:
•Spatial/temporal intermittency of turbulent flows is not used
• Inhomegeneous fidelity

- a-priori large/small scale separation 
- under-resolves energetic structures 
- over-resolves in between them
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Future Directions in CFD Research? 

2

Parallel adaptive high order numerical methods  

New/improved turbulence models

Direct physics-based coupling of

& 

that takes advantage of spatio-temporal intermittency 
of turbulent flows

New direction/philosophy/paradigm:
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What does direct coupling bring?

• the active control of the fidelity/accuracy of the simulation

• near optimal spatially adaptive computational mesh 

• the “desired” flow-physics is captured by considerably smaller 
number of spatial modes 

• considerably smaller Reynolds scaling exponent, 

• robust general mathematical framework for spatial/temporal 
model-refinement (m-refinement) that can be extended to LES 
with AMR approach

• mathematical framework for epistemic uncertainty quantification
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Simulate the evolution of the most energetic coherent 
vortices (track them), while modeling the effect of the 
subgrid scales.
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• Adaptive Wavelet Collocation Method
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Adaptive Wavelet Collocation Method (AWCM)

Single-mode 
Rayleigh-Taylor Instability 
(incompressible limit)
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Shock Wave Propagation over the Cylinder
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Shock Wave Propagation through the Cylinder Array
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• Hierarchical Variable Fidelity 
Multiscale Turbulence Modeling
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Turbulence Resolution

16

Kinetic Energy Based:

SGS dissipation Based: F = ⇧
"res+⇧

F = ksgs
kres+ksgs
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Turbulence Resolution

• Fidelity of the simulation is a function of Turbulence 
Resolution

• Objective - control the level of fidelity

16

Kinetic Energy Based:

SGS dissipation Based: F = ⇧
"res+⇧

F = ksgs
kres+ksgs
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Turbulence Resolution

16

Kinetic Energy Based:

SGS dissipation Based: F = ⇧
"res+⇧

F = ksgs
kres+ksgs

• Homogeneous Turbulence:

• LES with              fixed complexity   

• LES with              fixed complexity 

FKE

FD

⇠ Re0 = 1

⇠ Re9/4
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Spatial Variable Thresholding 

Fully Adaptive Wavelet Thresholding Filter 

Scales Dependency 

Buildup scales

Losing  some scales
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In General: 

   Wavelet-Threshold-Filtered Velocity 
   Depends on:
                        1) Threshold Level
                        2) Velocity Scale

Goal:             wherever          #✏

Idea: 
   Threshold is determined on-the-fly
    By Tracking areas of Locally Significant:

                        1) SGS Dissipation  or
                        2) Any other Physical quantity
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Lagrangian “Variable Thresholding” SCALES 

Spatial Variable Thresholding 

If      changed in spatial space   Then @ next time-step that flow-structures will move in space, 

it will face to either a smaller or greater

Recommended Solution: 
   Track     within a Lagrangian frame  by   “Lagrangian Path-Line Diffusive Averaging” Approach
   (Similarly to Vasilyev et al.,  [JOT, 9(11), 2008] Lagrangian SGS SCALES] )

   Similarly to Meneveau et al. [JFM, 319, 1996]  : Linear Averaging Along Characteristics
   Diffusion Term can be ignored    Because “Linear Averaging” itself will create required diffusion.
   Lagrangian Path-Line Diffusive Averaging Evolution equation for

✏
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1st order Interpolation
3rdOrder Interpolation
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Hybrid CVS & SCALES (Hierarchical Multiscale Adaptive Variable Fidelity) – 
Time Varying Goal Benchmark

Interpolation Approach1st & 3rd Order
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Hybrid   CVS / SCALES – Threshold Animation
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Hybrid   CVS / SCALES – Threshold Animation

1st  Interpolation
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Hybrid   CVS / SCALES – Threshold Animation

1st  Interpolation 3rd  Interpolation
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Hybrid   CVS / SCALES – Threshold Animation

1st  Interpolation 3rd  Interpolation �✏ = 0.05
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Hybrid   CVS / SCALES – Threshold Animation

1st  Interpolation 3rd  Interpolation

�✏ = 0.1

�✏ = 0.05
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Hybrid   CVS / SCALES – Threshold Animation

1st  Interpolation 3rd  Interpolation

�✏ = 0.1

�✏ = 0.05

⌫✏ = 4
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Hybrid   CVS / SCALES – Threshold Animation

1st  Interpolation 3rd  Interpolation

�✏ = 0.1

�✏ = 0.05

⌫✏ = 5⌫✏ = 4
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Hybrid   CVS / SCALES – Threshold Animation

1st  Interpolation 3rd  Interpolation

�✏ = 0.1

�✏ = 0.05

⌫✏ = 5⌫✏ = 4

This was a Benchmark  to Test 
Methodology + Time-Response + Accuracy
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Hybrid   CVS / SCALES – Threshold Animation

1st  Interpolation 3rd  Interpolation

�✏ = 0.1

�✏ = 0.05

⌫✏ = 5⌫✏ = 4

This was a Benchmark  to Test 
Methodology + Time-Response + Accuracy

Perspective: 
In Reality Goal can change in Space as well not just in Time
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Hybrid CVS & SCALES (Hierarchical Multiscale Adaptive Variable Fidelity) – 
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Solving Evolution Equation Directly�F⇥ = h�i
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• Reynolds Scaling and its 
Dependence on “Desired” Captured 

Flow Physics 

23
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Time-Averaged Energy Spectra – 
CVS and SCALES 

Linear Forcing Coefficient :

Adaptive Grid corresponds to                                                         (at highest level of resolution) 
Taylor micro-scale Reynolds number : 

Q = 6.6̄
Re�
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Time-Averaged Energy Spectra – 
CVS and SCALES 

Linear Forcing Coefficient :

Adaptive Grid corresponds to                                                         (at highest level of resolution) 
Taylor micro-scale Reynolds number : 

Q = 6.6̄
Re�

⇠= 70, 120, 190, 320 � = 0.09, 0.035, 0.015, 0.006
2563, 5123, 10243, 20483 J

max

= 6, 7, 8, 9 � = 0.2, 0.43
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Computational Complexity –
Fractal Dimension 

Spatial DOF† : 

†Paladin G, Vulpiani A, 1987. Phys. Rev. A 35:1971–1973

Re3DF /(DF +1)

DF  3

DFCVS . 13
11 = 1.18

DFSCALES . 11
13 = 0.846153

DFSCALES < 1
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Fraction SGS Dissipation – SCALES 

Linear Forcing Coefficient :

Adaptive Grid corresponds to                                                         (at highest level of resolution) 
Taylor micro-scale Reynolds number : 

Q = 6.6̄
Re�

⇠= 70, 120, 190, 320 � = 0.09, 0.035, 0.015, 0.006
2563, 5123, 10243, 20483 J

max

= 6, 7, 8, 9 � = 0.43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

oeddy

To
ta

l  
FS

G
SD

SCALES
   ¡=0.43   Cf=6.6667

 

 

    
0.32318

    
0.47587

    
0.59473

    
0.74504

    
0.32318

    
0.47587

    
0.59473

 2563    Re=70
 5123    Re=120
10243   Re=190
20483   Re=320

�F⇥ = h�i
h"resi+h�i

Wednesday, August 8, 12



Mechanical Engineering
Department of 

 & Simulation Laboratory & Simulation Laboratory
Multi-Scale ModelingMulti-Scale Modeling Coupling of Numerical Methods and Physical Models, August 8, 2012  

70 120 190 320

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Taylor Microscale Reynolds number

To
ta

l  
FS

G
SD

 

 
SCALES

31

Complexity – 
How %Fraction-SGSD Scales as Reynolds?

Fully Adaptive Wavelet Thresholding Filter 

✏ = ✏ (�)

Drawback:                as
 Solution:       Spatial Variable Thresholding

⇧ "" Re

�F⇥ =
⇣

h�i
h"resi+h�i

⌘
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Computational Complexity – 
G = �F⇥2563 with �=0.43 = 0.32
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Computational Complexity – 
                                                            Different     G
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 Perspective:
 

Very High Reynolds    +    3D WDNS    +    True CVS
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Ultimate Goal of SCALES – 
                                                            Data Mining     
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• How to Incorporate 
• Dynamic Coupling into existing LES 

36
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Hybrid WDNS/CVS/SCALES (Hierarchical Multiscale Adaptive Variable Fidelity) – 
m-SCALES
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model refinement  is not limited to SCALES – 
m-LES
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Conclusions

• the active control of the fidelity/accuracy of the simulation

• near optimal spatially adaptive computational mesh for the 
user-defined fidelity 

• the “desired” flow-physics is captured by considerably smaller 
number of spatial modes 

• considerably smaller Reynolds scaling exponent, that depends 
on the captured flow physics (KE or SGS dissipation) 

• robust general mathematical framework for spatial/temporal 
model-refinement (m-refinement) that can be extended to AMR 
approach

41

Demonstrated:
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Perspectives

42

The  proposed philosophy/paradigm of dynamic 
coupling of AMR and turbulence modeling is the 
FUTURE! 
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