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Propagating parametric uncertainty in a nutshell

Let £ € = C R belonging to a probability space (=, B, u¢ ).
QoI (€)

M(y(£):€) =0, pg—ae. —

—
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A growing issue in numerical simulations

Propagating uncertainty in a model and precisely assessing its output requires
accurate description of input uncertainty y (x, &),
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A growing issue in numerical simulations

Propagating uncertainty in a model and precisely assessing its output requires
accurate description of input uncertainty y (x, &),
But...

@ tendency to account for more and more phenomena (multi-physics, etc.) —
higher number of sources of uncertainty,

@ more and more sophisticated models (high fidelity) — input description has
become the bottleneck of the simulation chain accuracy,

@ input data are difficult and/or expensive to acquire (e.g., in situ measurements),

@ usually impossible to set-up an experimental design: samples are random and
do not obey a sampling strategy (say, like quadrature).
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A growing issue in numerical simulations

Propagating uncertainty in a model and precisely assessing its output requires
accurate description of input uncertainty y (x, &),
But...

@ tendency to account for more and more phenomena (multi-physics, etc.) —
higher number of sources of uncertainty,

@ more and more sophisticated models (high fidelity) — input description has
become the bottleneck of the simulation chain accuracy,

@ input data are difficult and/or expensive to acquire (e.g., in situ measurements),

@ usually impossible to set-up an experimental design: samples are random and
do not obey a sampling strategy (say, like quadrature).

— it is critical to infer the most out of the scarce available data.

As an example, what can reasonably be inferred from a mere 1000 samples of a
100-dimensional vector-valued random variable?
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Let’s try anyway. ..

Two reasons for hope:
@ “blessing of dimensionality”. Approximation in many bases is sparse,
@ very likely that the underlying quantity is anisotropic.
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Let’s try anyway. ..

Two reasons for hope:
@ “blessing of dimensionality”. Approximation in many bases is sparse,
@ very likely that the underlying quantity is anisotropic.

= A route to tractability:

@ exploit the intrinsic difference between, say, physical and stochastic dimensions
— separated representation whenever possible,

@ take advantage of low correlation orders between dimensions in most physical
phenomena,

@ efficient evaluation of the basis terms,
@ subset selection technique to further reduce the cardinality.
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Let’s try anyway. ..

Two reasons for hope:
@ “blessing of dimensionality”. Approximation in many bases is sparse,
@ very likely that the underlying quantity is anisotropic.

= A route to tractability:

@ exploit the intrinsic difference between, say, physical and stochastic dimensions
— separated representation whenever possible,

@ take advantage of low correlation orders between dimensions in most physical
phenomena,

@ efficient evaluation of the basis terms,
@ subset selection technique to further reduce the cardinality.

{yM,y@ yM} —y(x,t€,...)
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Format of the approximation

M

Information on the Qol: {x(’"),g(’"),y(’")} - x(M ¢ R1:23,... ¢(m) ¢ RA,
m=

y(m e R.
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Format of the approximation

M
Information on the Qol: {x(’"),g(’"),y(’")} - x(M ¢ R1:23,... ¢(m) ¢ RA,
m=
y(m e R.

= crucial to use a minimal cardinality basis for a given approximation accuracy
— Yy (X, &) = >, wr(x) Ar (&) low-rank approximation.
solved by Galerkin projection:

R
<}’(X7§) =D wr (%) Ar(€), WR (X) AR (E)> =0, Vwr(X)Ap(§)eV®S.

r
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Format of the approximation

M
Information on the Qol: {x(’"),g(’"),y(’")} - x(M ¢ R1:23,... ¢(m) ¢ RA,
m=
y(m e R.

= crucial to use a minimal cardinality basis for a given approximation accuracy
— Yy (X, &) = >, wr(x) Ar (&) low-rank approximation.
solved by Galerkin projection:

R
<}’(X7§) =D wr (%) Ar(€), WR (X) AR (E)> =0, Vwr(X)Ap(§)eV®S.

r

Alternate projection: Letting z(x, &) := y (x,&) — 571 wr (X) Ar (&), a pair

(wgr (x), g (&)) is chosen to satisfy

Vérev,
Vg €S,

{ (AR ®Cwp AR O1) (2 AR Oy »

(WRV Cym WRYKk)y = (Z,WRYKk)ny,,

with < u (X, &), v (X, &) >p = Z%C:O?- u (X(m)7£(m)) v (X(m),g(m)) the

“experimental” inner product in the approximation space.
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Representing A (£)

The vast majority of physics-based random signals exhibit a comparatively low
interaction order between input variables so that:

Py All 3 ||Pyr v/ > [v] A — Py Al|, P~ projects on a |y|—D canonical hyperplane,
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Representing A (£)

The vast majority of physics-based random signals exhibit a comparatively low
interaction order between input variables so that:

Py All 3 ||Pyr v/ > [v] A — Py Al|, P~ projects on a |y|—D canonical hyperplane,

— best suits the High-Dimensional Model Representation (HDMR), RABITZ & ALIS

(1999).
d d
A& = R+ HE)+ D g+ +haa(éh &),
i1 i<j=1
[vI=N,;<d
~ Y K(&) =),
~C{1,....d}
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Functional basis for {f,}

[vI=N;

AO~ > (&)

~C{1,....d}

Approximation of the modes
Each HDMR mode is somehow naturally approximated within a p-th total order
polynomial expansion format (PC):

fy~f = Z Coy Yo (€+)-

a,|al=[|
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Functional basis for {f,}

[vI=N;

NGETED DI (W

~C{1,...,d}

Approximation of the modes
Each HDMR mode is somehow naturally approximated within a p-th total order
polynomial expansion format (PC):

fy~f = Z Coy Yo (€+)-

a,|al=[|

But for high PC order p and/or high HDMR order Nj, the PC format of the modes {f, }
requires too many DOFs.

— substitute a low-rank approximation:
vl P

fat =D TTD0 Camptr o (E)-

rol=1a=1
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Functional basis for {£,} (cont'd)

How to exploit a priori the likely sparsity of the approximation in {£,}?
NP-hard problem.
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Functional basis for {£,} (cont'd)

How to exploit a priori the likely sparsity of the approximation in {£,}?
NP-hard problem.

c:argminH)\—\UE‘Hg-‘,—T Z ||(~2HK‘17
eerlJ| ~e{l,....d}

7 > 0 and K a positive definite matrix. The whole set of predictors associated with a
mode £, is treated together for subset selection:

— speed-up subset selection step,

— makes the subset selection more robust w.r.t. measurement noise.
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Functional basis for {£,} (cont'd)

How to exploit a priori the likely sparsity of the approximation in {£,}?
NP-hard problem.

c:argminH)\—\UE‘Hg-‘,—T Z ||(~2HK‘17
eerlJ| ~e{l,....d}

7 > 0 and K a positive definite matrix. The whole set of predictors associated with a
mode £, is treated together for subset selection:

— speed-up subset selection step,

— makes the subset selection more robust w.r.t. measurement noise.

Compressed Sensing is suitable but intractable in high-dim framework (top-to-bottom
approach).

— modified Least Angle Regression Selection (LARS).

LARS determines a sequence of approximation bases of growing cardinality (explores
the Pareto front).

Issue: closed-form solution for approximations linear in the coefficients while {77} are
nonlinear.

— Use the PCE-HDMR format for the subset selection only and rk1-HDMR for
approximating A (£).
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Solution process for y (x, &) ~ >, w; (x) A, (€)

0 Choose p, Nj, rmax, Nx. Initialize {zm = ym}%:1 and setr «+ 0,
@ solve a deterministic problem for {cw.r}: (Ar ® Cw.r, Ar O e = (2 Ar D)y
and normalize w (x),

Meoet

@ solve a stochastic problem for {cy r}: (wr W ey r, wr wk>MCO . ={(Z,Wr )y

@ [Initialize the stochastic approximation basis {f,} =0, =0,

@ solve the (g)LASSO optimization problem for A\, with the (g)LARS
algorithm — sequence of approximation bases with ordered indices
{+"},

@© Set n+ 0. Solve the approximation problem:

@ for the next index +("*") in the sequence, activate the mode £_n1),

r(n+1) — {r(n (n+1) }

@ solve for the approximation coefficients {c+,r} by (nested) Alternate
Least-Squares over the predictors,

Meoet

= |—(n+1

2
C~,r = argmin Hz — W Vo) Crr(ni1) —wr Wy t":-,‘
{ E,,IQR"H {r }\7 {r }\7 Meoer

@ estimate the relative approximation error € by cross-validation. If e
decreases, n < n+ 1 and go back to step 4. Otherwise, exit inner loop.

Q IfIArl y,, CONVErges, set z «— z — wr Ar, and r < r + 1. lterate in step 2.
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If one is gi
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Error estimation when the amount of information varies.

Impact of the dimensionality d onto the recovery performance
— the anisotropy is successfully exploited.
If d = 100 —» card{fy } =310% (PC:210'").
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Subset selection. Example for d = 40

d d d
XE G+ HE)+ D &)+ D fw (€& &)+
i=1 i<j=1 i<j<k=1
1 4 1t .t e, 1
.8 1 o8l . ° ° .
61 4 06f . : : .
4 4 04f ° ° 4
21 1 o2F ) ‘
of 1 ob
21 4 -02f
.4 4 04}
.6 -06
.8 -08 . .
b 1 S o o o ° :
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Connectivity of the 2nd order Connectivity of the 3rd order

— essentially activates only a few dimensions.
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Connectivity of the 2nd order
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AwHpdialiviial bWWet

Complexity for approximating A (&)
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Scaling with the dimension d.
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Influence of the identification uncertainty and

measurement noise — d = 40

. ootk \
0.001 | 3

0.0001
1

L L !
10 100 1000
SNR

— Weighted Total Least Square formulation
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AR

0.2 L L . 15 . .

Spatial modes {w; (x)}

35 T T

wx)

-1 -0.5 0 05 1 -1 -0.5 0 0.5 1

First two spatial modes. d = 6 (7-dimensional problem), # unknowns: 70,304.

M = 3,300 = about 3.2 samples per dimension.

— they compare rather well with exact separated solution modes (from
Karhunen-Loéve).
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Shallow Water Equations

AN

X

First spatial mode. d = 8 (10-dimensional problem), # unknowns: 781,000+.

M = 19,300 = about 2.7 samples per dimension.
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Concluding remarks

@ A solution technique to get an accurate representation of input variables from
experimental data to feed numerical models: y (x,&) = >, wr (X) Ar (§),

@ few data available — key of success is a well suited functional representation,

@ efficient subset selection technique to derive a stochastic basis even for
high-dimensional problems,

@ approximation somehow robust w.r.t. noise (Weighted Total Least Squares) — still
in progress.
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Concluding remarks

@ A solution technique to get an accurate representation of input variables from
experimental data to feed numerical models: y (x,&) = >, wr (X) Ar (§),

@ few data available — key of success is a well suited functional representation,

@ efficient subset selection technique to derive a stochastic basis even for
high-dimensional problems,

@ approximation somehow robust w.r.t. noise (Weighted Total Least Squares) — still
in progress.

Down the road...
@ Application to realistic problems (oil spill in Gulf of Mexico),

@ theoretical analysis supporting the choice of the representation format for A (&):
CANDECOMP-like? HDMR? Tensor Trains? ...?
— format selection issue.
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Concluding remarks

@ A solution technique to get an accurate representation of input variables from
experimental data to feed numerical models: y (x,&) = >, wr (X) Ar (§),

@ few data available — key of success is a well suited functional representation,

@ efficient subset selection technique to derive a stochastic basis even for
high-dimensional problems,

@ approximation somehow robust w.r.t. noise (Weighted Total Least Squares) — still
in progress.

Down the road...
@ Application to realistic problems (oil spill in Gulf of Mexico),

@ theoretical analysis supporting the choice of the representation format for A (&):
CANDECOMP-like? HDMR? Tensor Trains? ...?
— format selection issue.

Accuracy of input is obviously critical for accuracy of output of numerical models. ..
...and can often be achieved even from scarce experimental datasets
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Format for {\ (&)}, a motivating example

Stochastic diffusion equation on Q x =, Q = [x_, x;.] with deterministic Dirichlet
boundary conditions:

V (v(x,€) Vy(x,€)) = F(x,€),
y(x=,8)=y-, y(x4,8 =yt

F and v defined by
v (ngl) =1 (X) + Z VOv,k Wy k (X) gl’(:
k

F(x,€") = Fo(x)+ Y varrwr () &,
k

with vy = 1 and Fy = —1. The spatial modes w,, x (x) and wr x (x), and their
associated amplitude , /7, x and , /GF k, are the first dominant eigenfunctions of
eigenproblems associated with Gaussian correlation kernels:

_(ex)? ()
K,,(x,x’):aﬁe G , Kr (x,x') =0

with o, = V0.5, o = V0.5, Le,, = V0.2, Lg, = V0.2.
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Weak solution of the stochastic diffusion problem. Approximation of y (x*, &) = X (&).
Higher order HDMR modes activated upon sensitivity Sobol estimates at previous

order.

T
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L L L
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.
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I

— HDMR is a sound choice, even with this naive basis adaption scheme.
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