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Propagating parametric uncertainty in a nutshell

Let ξ ∈ Ξ ⊆ Rd belonging to a probability space
(
Ξ,B, µξ

)
.

y (ξ) ∈ R −→ M (y(ξ); ξ) = 0, µξ − a.e. −→ QoI (ξ)
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A growing issue in numerical simulations

Propagating uncertainty in a model and precisely assessing its output requires
accurate description of input uncertainty y (x , ξ),

But. . .

tendency to account for more and more phenomena (multi-physics, etc.) −→
higher number of sources of uncertainty,

more and more sophisticated models (high fidelity) −→ input description has
become the bottleneck of the simulation chain accuracy,

input data are difficult and/or expensive to acquire (e.g., in situ measurements),

usually impossible to set-up an experimental design: samples are random and
do not obey a sampling strategy (say, like quadrature).

=⇒ it is critical to infer the most out of the scarce available data.

As an example, what can reasonably be inferred from a mere 1000 samples of a

100-dimensional vector-valued random variable?
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Let’s try anyway. . .

Two reasons for hope:
“blessing of dimensionality”. Approximation in many bases is sparse,

very likely that the underlying quantity is anisotropic.

=⇒ A route to tractability:

exploit the intrinsic difference between, say, physical and stochastic dimensions
−→ separated representation whenever possible,

take advantage of low correlation orders between dimensions in most physical
phenomena,

efficient evaluation of the basis terms,

subset selection technique to further reduce the cardinality.

{
y (1), y (2), . . . y (M)

}
−→y (x , t , ξ, . . .)
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Format of the approximation
Information on the QoI:

{
x(m), ξ(m), y (m)

}M

m=1
, x(m) ∈ R1,2,3,..., ξ(m) ∈ Rd ,

y (m) ∈ R.

=⇒ crucial to use a minimal cardinality basis for a given approximation accuracy

−→ y (x , ξ) ≈
∑

r wr (x) λr (ξ) low-rank approximation.

solved by Galerkin projection:

〈
y (x , ξ)−

R∑
r

wr (x) λr (ξ),wR (x) λR (ξ)

〉
= 0, ∀wR (x)λR (ξ) ∈ V ⊗ S.

Alternate projection: Letting z (x , ξ) := y (x , ξ)−
∑R−1

r wr (x) λr (ξ), a pair
(wR (x) , λR (ξ)) is chosen to satisfy{ 〈

λR Φ cw,R , λR φl
〉

Mcoef
= 〈z, λR φl 〉Mcoef

, ∀φl ∈ V,〈
wR Ψ cγ,R ,wR ψk

〉
Mcoef

= 〈z,wR ψk 〉Mcoef
, ∀ψk ∈ S,

with < u (x , ξ) , v (x , ξ) >Mcoef :=
∑Mcoef

m=1 u
(

x(m), ξ(m)
)

v
(

x(m), ξ(m)
)

the

“experimental” inner product in the approximation space.
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Representing λ (ξ)

The vast majority of physics-based random signals exhibit a comparatively low
interaction order between input variables so that:

‖Pγ λ‖ �
∥∥Pγ′,|γ′|>|γ| λ− Pγ λ

∥∥ , Pγ projects on a |γ|−D canonical hyperplane,

=⇒ best suits the High-Dimensional Model Representation (HDMR), RABITZ & ALIŞ
(1999).

λ (ξ) = f∅ +
d∑

i=1

fi (ξi ) +
d∑

i<j=1

fij
(
ξi , ξj

)
+ . . .+ f12...d (ξ1, ξ2, . . . , ξd ) ,

≈
|γ|=Nl<d∑

γ⊆{1,...,d}
fγ
(
ξγ
)

= f (ξ) .
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Functional basis for {fγ}

λ (ξ) ≈
|γ|=Nl∑

γ⊆{1,...,d}
fγ
(
ξγ
)

Approximation of the modes
Each HDMR mode is somehow naturally approximated within a p-th total order
polynomial expansion format (PC):

fγ ≈ f̂γ ≡
∑

α,|α|=|γ|
cα,γ ψα

(
ξγ
)
.

But for high PC order p and/or high HDMR order Nl , the PC format of the modes {fγ}
requires too many DOFs.

−→ substitute a low-rank approximation:

fγ ≈ f̃γ ≡
∑

r

|γ|∏
l=1

p∑
α=1

cα,γ,l,r ψα
(
ξγ(l)

)
.
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Functional basis for {fγ} (cont’d)
How to exploit a priori the likely sparsity of the approximation in {fγ}?

NP-hard problem.

c = arg min
c̃∈R|J |

‖λ−Ψ c̃‖2
2 + τ

∑
γ∈{1,...,d}

‖c̃‖Kγ
,

τ > 0 and Kγ a positive definite matrix. The whole set of predictors associated with a
mode fγ is treated together for subset selection:

−→ speed-up subset selection step,
−→ makes the subset selection more robust w.r.t. measurement noise.

Compressed Sensing is suitable but intractable in high-dim framework (top-to-bottom
approach).

−→ modified Least Angle Regression Selection (LARS).

LARS determines a sequence of approximation bases of growing cardinality (explores
the Pareto front).

Issue: closed-form solution for approximations linear in the coefficients while
{

f̃γ
}

are
nonlinear.

=⇒ Use the PCE-HDMR format for the subset selection only and rk1-HDMR for
approximating λ (ξ).
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Solution process for y (x , ξ) ≈
∑

r wr (x) λr (ξ)

1 Choose p, Nl , rmax , Nx . Initialize {zm = ym}M
m=1 and set r ← 0,

2 solve a deterministic problem for {cw,r}: 〈λr Φ cw,r , λr φl 〉Mcoef
= 〈z, λr φl 〉Mcoef

and normalize w (x),

3 solve a stochastic problem for {cγ,r}: 〈wr Ψ cγ,r ,wr ψk 〉Mcoef
= 〈z,wr ψk 〉Mcoef

1 Initialize the stochastic approximation basis {fγ} = ∅, Γ = ∅,
2 solve the (g)LASSO optimization problem for λr with the (g)LARS

algorithm −→ sequence of approximation bases with ordered indices{
γ(n)

}
,

3 Set n← 0. Solve the approximation problem:
4 for the next index γ(n+1) in the sequence, activate the mode fγ(n+1) ,

Γ(n+1) =
{
Γ(n),γ(n+1)

}
,

5 solve for the approximation coefficients {cγ,r} by (nested) Alternate
Least-Squares over the predictors, cγ,r = arg min

c̃γ∈R|γ|

∥∥∥z − wr Ψ{Γ(n+1)}\γc{Γ(n+1)}\γ − wr Ψγ c̃γ

∥∥∥2

Mcoef
, ∀γ ∈ Γ(n+1) ,

6 estimate the relative approximation error ε by cross-validation. If ε
decreases, n← n + 1 and go back to step 4. Otherwise, exit inner loop.

4 If ‖λr‖Mcoef
converges, set z ← z − wr λr , and r ← r + 1. Iterate in step 2.
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If one is given M samples. . .
Stochastic convection-diffusion problem

Error estimation when the amount of information varies. Impact of the dimensionality d onto the recovery performance
d = 8. −→ the anisotropy is successfully exploited.

If d = 100−→ card
{

fγ
}

= 3 106 (PC: 2 1011).

Lionel Mathelin UQ from high-dimensional experimental data



Subset selection. Example for d = 40

λ (ξ) ≈ f∅ +
d∑

i=1

fi (ξi ) +
d∑

i<j=1

fij
(
ξi , ξj

)
+

d∑
i<j<k=1

fijk
(
ξi , ξj , ξk

)
+ . . .

Connectivity of the 2nd order Connectivity of the 3rd order
−→ essentially activates only a few dimensions.
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Connectivity of the 2nd order
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Complexity for approximating λ (ξ)

Jsubsel ∼ O
(

M4

p2

)
︸ ︷︷ ︸
repeated LS pb

+ O

M2
Nl∑

l=1

d!

(d − l)! l!


︸ ︷︷ ︸

search for most correlated inactive mode

/ O
(

M2 dNl p Nl
−1
)
,

Jcoefs / O
(

M2 dNl p Nl
2
)
.

Scaling with # samples M (Nl = 3). Scaling with the dimension d .
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Influence of the identification uncertainty and
measurement noise – d = 40

−→Weighted Total Least Square formulation
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Spatial modes {wr (x)}

First two spatial modes. d = 6 (7-dimensional problem), # unknowns: 70,304.

M = 3, 300 =⇒ about 3.2 samples per dimension.

−→ they compare rather well with exact separated solution modes (from
Karhunen-Loève).
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Shallow Water Equations

First spatial mode. d = 8 (10-dimensional problem), # unknowns: 781,000+.

M = 19, 300 =⇒ about 2.7 samples per dimension.
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Concluding remarks

A solution technique to get an accurate representation of input variables from
experimental data to feed numerical models: y (x , ξ) ≈

∑
r wr (x) λr (ξ),

few data available −→ key of success is a well suited functional representation,

efficient subset selection technique to derive a stochastic basis even for
high-dimensional problems,

approximation somehow robust w.r.t. noise (Weighted Total Least Squares) – still
in progress.

Down the road. . .
Application to realistic problems (oil spill in Gulf of Mexico),

theoretical analysis supporting the choice of the representation format for λ (ξ):
CANDECOMP-like? HDMR? Tensor Trains? . . . ?
−→ format selection issue.

Accuracy of input is obviously critical for accuracy of output of numerical models. . .
. . . and can often be achieved even from scarce experimental datasets
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Format for {λ (ξ)}, a motivating example
Stochastic diffusion equation on Ω× Ξ, Ω = [x−, x+] with deterministic Dirichlet
boundary conditions:

∇ (ν (x , ξ) ∇y (x , ξ)) = F (x , ξ) ,

y (x−, ξ) = y−, y (x+, ξ) = y+.

F and ν defined by

ν
(
x , ξ′

)
= ν0 (x) +

∑
k

√
σν,k ων,k (x) ξ′k ,

F
(
x , ξ′′

)
= F0 (x) +

∑
k

√
σF ,k ωF ,k (x) ξ′′k ,

with ν0 = 1 and F0 = −1. The spatial modes ων,k (x) and ωF ,k (x), and their
associated amplitude √σν,k and √σF ,k , are the first dominant eigenfunctions of
eigenproblems associated with Gaussian correlation kernels:

Kν
(
x , x ′

)
= σ2

ν e
− (x−x′)2

L2
c,ν , KF

(
x , x ′

)
= σ2

F e
− (x−x′)2

L2
c,F ,

with σν =
√

0.5, σF =
√

0.5, Lc,ν =
√

0.2, LF ,ν =
√

0.2.
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Low rank or HDMR?
Weak solution of the stochastic diffusion problem. Approximation of y (x?, ξ) ≡ λ (ξ).
Higher order HDMR modes activated upon sensitivity Sobol estimates at previous
order.

−→ HDMR is a sound choice, even with this naive basis adaption scheme.

Back...
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