Transition and turbulence in MHD at very strong magnetic fields **Prasanta Dey, Yurong Zhao, Oleg Zikanov** University of Michigan – Dearborn, USA **Dmitry Krasnov, Thomas Boeck, Andre Thess** Ilmenau University of Technology, Germany **Yaroslav Listratov, Valentin Sviridov** Moscow Power Engineering Institute, Russia

Support: US National Science Foundation, German Science Foundation, Russian Ministry of Education and Science

MHD Approximation

Assumption:

Instantaneous propagation of electromagnetic radiation, $L/\tau \ll c$. τ , L – typical time and length scales

Neglect:

Displacement currents, $\vartheta \mathbf{u}$ in Ohm's law, $\vartheta \mathbf{E}$ in electromagnetic force

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{\Phi} \times \mathbf{B} + \frac{1}{\sigma \mu_0} \nabla^2 \mathbf{B} \qquad \nabla \cdot \mathbf{j} = 0$$
$$\mathbf{j} = \sigma \mathbf{\Phi} + \mathbf{u} \times \mathbf{B} \qquad \mathbf{F} = \mathbf{j} \times \mathbf{B}$$

MHD flows

Sunspots

Nature 2002

www.iter.org

Magnetic confinement fusion

Metallurgical applications

- Control of nozzle jet in continuous steel casting
- Crystal growth
- Primary aluminum production in Hall-Héroult cells
- Induction heating and stirring
- Vacuum arc remelting
- Magnetic valves
- Electromagnetic pumps
- Electromagnetic flow meters

Fusion enabling technology

Cooling/breeding blankets and divertors for TOKAMAK reactors

Flows of liquid metals (Li, Li-Pb, FLiBe) in strong magnetic fields

Magnetic Reynolds number

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{\Phi} \times \mathbf{B} + \frac{1}{\operatorname{Re}_m} \nabla^2 \mathbf{B}$$

 $Re_m = UL/\eta = UL\sigma\mu_0$

 $\sigma-Electrical \ conductivity$

 μ_0 – Magnetic permeability of vacuum

Liquid	σ [Ω ⁻¹ m ⁻¹]	η [m ² s ⁻¹]
Sea water	5	6.3x10 ⁶
Al (750 C)	$4x10^{6}$	0.2
Steel (1500 C)	0.7x10 ⁶	1
Na (400 C)	6x10 ⁶	0.13
Hg (20 C)	106	0.8
GaInSn (20 C)	3.3x10 ⁶	0.25

Magnetic Reynolds number

MHD flows at low Re_m (quasi-static approximation)

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{\text{Re}}\nabla^2 \mathbf{u} + \frac{\text{Ha}^2}{\text{Re}}\mathbf{j} \times \mathbf{e}_b$$
$$\nabla \cdot \mathbf{u} = \mathbf{0}$$
$$\mathbf{j} = -\nabla \phi + \mathbf{u} \times \mathbf{e}_b$$
$$\nabla^2 \phi = \langle \nabla \times \mathbf{u} \rangle_b$$

$$\operatorname{Re} \equiv \frac{UL}{v}, \qquad \operatorname{Ha} \equiv BL_{\sqrt{\frac{\sigma}{\rho v}}}$$

Effect of magnetic field on flow structures (far from walls)

Joule dissipation:

$$\frac{d}{dt} \int \frac{1}{2} \rho \mathbf{u}^2 dV = -\int \varepsilon dV - \int \mu dV$$
$$\mu = \frac{1}{\sigma} \int \mathbf{J}^2 dV$$

Effect of magnetic field on flow structures (far from walls)

Joule dissipation:

$$\frac{d}{dt}\int \frac{1}{2}\rho \mathbf{u}^2 dV = -\int \varepsilon dV - \int \mu dV$$

MHD flows are found in laminar or transitional state more often than ordinary hydrodynamic flows

$$\mu = \frac{1}{\sigma} \int \mathbf{J}^2 dV$$

Effect of magnetic field on flow structures (far from walls)

Joule dissipation:

$$\frac{d}{dt}\int\frac{1}{2}\rho\mathbf{u}^2dV = -\int\varepsilon dV - \int\mu dV$$

MHD flows are found in laminar or transitional state more often than ordinary hydrodynamic flows $\mu = \frac{1}{\sigma} \int \mathbf{J}^2 dV$

Wíthout magnetíc field

Wíth magnetíc field

Anisotropy of flow structures:

Anisotropy of gradients at low Re_m

I. Archetypal MHD flow – duct with insulating walls in a uniform transverse magnetic field

Det Kgl. Danske Videnskabernes Selskab.

Mathematisk-fysiske Meddelelser. XV, 7.

Hg-DYNAMICS II

EXPERIMENTAL INVESTIGATIONS ON THE FLOW OF MERCURY IN A HOMOGENEOUS MAGNETIC FIELD

BY

JUL. HARTMANN AND FREIMUT LAZARUS

KØBENHAVN LEVIN & MUNKSGAARD EJNAR MUNKSGAARD 1937

Flow structure: Flat core and MHD boundary layers

Question

Transition between laminar and turbulent flow regimes

R=Re/Ha=200 - 250 or 350 - 400 ?

Numerical method – Direct Numerical Simulations

Finite difference solver (Krasnov et al, Comp. Fluids 2011)

Time advancing:	Adams-Bashforth/BWD 2nd order explicit with projection method for pressure/incompressibility
Grid arrangement:	Structured collocated grid with staggered fluxes
Viscous term:	2nd-order finite differences
<i>Non-linear term</i> :	2nd-order, divergent form, highly conservative operator (Morinishi et.al. 1998)
MHD term:	2nd-order, charge-conserving scheme for potential eq. and Lorentz force (Ni et.al. 2007)
Poisson solver:	Fourier expansion + 2D direct solver
Parallelization:	Hybrid parallelization: MPI + OpenMP

Parameters, Grid, Boundary conditions

- **Re=10⁵** (in terms of mean velocity and halfwidth)
- Ha=0, 100, 200, 300, 350, 400
- Domain size: $4\pi x^2 x^2$
- Numerical resolution: 2048x768x768
- Nearly Chebyshev-Gauss-Lobatto wall clustering
- Electrically insulating walls
- Periodic inlet/exit

Instantaneous streamwise velocity

Instantaneous streamwise velocity

Turbulence in sidewall layers

 2^{nd} eigenvalue of $S_{ik}S_{kj}+\Omega_{ik}\Omega_k j$ (Jeong, Hussein, JFM 1995)

Summary of results

Ha	Ν	U _{cl}	Re _{τ,y}	Re _{τ,z}
0	0	1.1768	4253	4253
100	0.1	1.2304	3462	5269
200	0.4	1.3011	2487	5099
300	0.9	1.1466	1993	5865
350	1.225	1.1177	1901	6255
400 (laminar)	1.6	1.0465	1543	6512

Time-averaged in fully developed flow

Mean streamwise velocity

Conclusions

- Transitional flow regimes with turbulence restricted to sidewall layers in a wide range of Ha
- Within sidewall layers, turbulence is small-scale and approaching isotropy near walls, but becomes large-scale, weak, and strongly anisotropic toward the center
- Non-trivial transformation of mean flow profile in the spanwise direction: lin-log

Krasnov et al, J. Fluid Mech. 2012, 704, 421-446

II. Mixed convection with strong transverse magnetic field

Flow of Hg in a horizontal pipe with transverse magnetic field: Institute of High Temperatures RAS

Pipe inner diameter: d=19 mmWalls: *stainless steel 0.5 mm* Length of working segment: 2mHeated length: 0.812 m (43d)Uniform magn. field: 0.5m (26d)Max. heat flux: $q < 55 kW/m^2$ Max. magn. field: B < 1T

Considered Case

- Horizontal pipe
- Perpendicular horizontal magnetic field
- Heated lower half
- Thermally insulated upper half

 $Re_d = 10^4$

Ha_d=0, 100, 300, 500

 $Gr_d = 8.3 \times 10^7 (q = 35 \text{ kW/m}^2)$

Pr=0.022

Experimental

Experimental data

Hypothesis

Linear stability analysis: Base flow

Linear Stability Analysis: 2D (streamwise-uniform) mode

Volume-averaged perturbations: E2d, $E\theta 2d - x$ -independent mode E3d, $E\theta 3d - mode$ of x-periodicity λ

Linear Stability Analysis: 2D (streamwise-uniform) mode

Ha=500

Linear Stability Analysis: 2D + 3D modes

Example: Ha_d =300, λ =1.0d

t=100, *horizontal cross-section through pipe axis*

Vertical velocity perturbations

Magnetic field

Example: $Ha_d=300, \lambda=1.0d$ t=100, verticalcross-section through pipe axis

 $Ha_d = 300$

Fastest growing mode: λ =0.9*d*, *period T*=0.8 <u>Dimensional frequency ~ 3.2 Hz</u> (compare with 2-3 Hz in experiment)

 $Ha_{d} = 500$

Fastest growing mode: λ =0.9d, period T=0.8 Growth rate ~ 10% higher than at Ha=300

Further results

- *Ha*=100: No exponential growth of 3D modes found
- *Ha*=300, but insufficient numerical resolution of boundary layers:

No exponential growth of 3D modes found

DNS of experiment's test section

- Realistic inlet/exit;
- div-free 2D distribution of magnetic field following experimental data
- x/d=53 domain length;
- x/d=43 heating area; x/d=31 magnet;
- Resolution: $N_r = 90$, $N_{\theta} = 96$, $N_x = 1696$, $A_r = 3.0$

Fully developed flow, Ha=300

horizontal cross-section through pipe axis

Fully developed flow, Ha=300

horizontal cross-section through pipe axis

Fully developed flow, Ha=300

vertical cross-section through pipe axis

Fully developed flow, Ha=300

Comparison between DNS and experiment, Ha=300

Non-dimensional temperature top and bottom wall 0.8 0.8 **⊕**‡/Nu 0.7 0.7 0.6 0.6 0.5 0.5帘 ☆ ☆ П 0.4 0.4 ☆ 0.3 0.3 $1/Nu_{a}$ 0.2 **O** 0.2 **\$**0 bottom 0 **0** \diamond \cap ò 0 0.1 0.1 top $1/Nu_{T}$ 0.0 0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 x/d-0.4 -0.4-40 -20 °, x∕r 20 40 5 10 15 2025 30 35 4045 0 Experimental data (MPEI, JIHT RAS) 1 - Ha = 0, 2 - Ha = 100, 3 -*Ha*=300, 4 – *Ha*=500

DNS

Comparison between DNS and experiment, Ha=300

Temperature fluctuations: r=0.7R, bottom, x/d=37

Comparison between DNS and experiment, Ha=300

Spectrum of temperature fluctuations: r=0.7R, bottom, x/d=37

Conclusions:

Temperature fluctuations observed in experiments at Ha=300 (but not at Ha=100) are explained by reorientation of thermal convection rolls so that their axes are parallel to the magnetic field

This type of convection is detected in linear stability analysis and confirmed in a large-scale DNS

The results of numerical model are in good quantitative agreement with experimental results

Good numerical resolution of Hartmann layers is critical for capturing the flow behavior

Possibility of strong temperature fluctuations caused by convection has to be considered in design of MHD liquid metal heat exchangers

Implications for LM blanket design

HCLL

DCLL

 $Gr \sim 10^{10} - 10^{12}$ $Ha \sim 10^4$