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SOME HISTORY

Numerous papers (of variable quality) have been published

Annual Review articles by Marple (1970) and Drew (1983)

Einstein (1906) investigated these flows

An early investigation involving the stability of plane
Poiseuille flow made by Saffman (1962)

Michael (1968) investigated the (inviscid) dusty flow past a
sphere

Hydrodynamics of Suspensions Ungarish (1993)

The Dynamics of Fluidized Particles Jackson (2000)



(COMPREHENSIVE) EQUATIONS OF MOTION (A LA

DREW, 1983)

Following Drew (1983)

∂(αkρk )

∂t
+∇ · (αkρkvk ) = 0

∂(αkρkvk )

∂t
+∇ · (αkρkvkvk ) = −αk∇pk +∇ ·

(

αk (τk + σk )

)

+ (pk ,i − pk )∇αk + Mk

k = 1: particles, k = 2: fluid. τk is (approximately) stress

tensor, σk turbulent stress tensor, pk ,i pressure at interface, Mk

‘interfacial’ force density’; α, ρ, v volume fraction, density and
velocity fields.



SIMPLIFICATIONS

Turbulent stresses σk = 0

Drew (1983) states pk ,i = pk for non-acoustic problems

Drew (1983) states p1 = p2 + pc , where pc pressure due to
collisions; assume p1 = p2, and constant.

Assume τ1 = 0 for solid particles

Must have α1 + α2 = 1, M1 + M2 = 0

Will consider 3 problems



NON-DIMENSIONAL EQUATIONS OF MOTION

uf , up fluid, particle velocities

−
∂α

∂t
+∇ ·

(

(1 − α)uf
)

= 0

∂uf

∂t
+(uf ·∇)uf = −∇p+

1
Re

1
1 − α

∇·
(

(1 − α)e
)

+
βα

1 − α
(up−uf ),

∂α

∂t
+∇ · (αup) = 0,

∂up

∂t
+ (up · ∇)up = −

1
γ
∇p +

β

γ
(uf − up)

Here Re = UL/ν, β = (9νL)/(2Ud2) (Stokes drag), γ = ρp/ρf ,
e rate of strain tensor for fluid.



PROBLEM 1: STEADY DUSTY INVISCID FLOW OVER A

CIRCULAR CYLINDER

Cylinder version of sphere problem considered by Michael
(1968) - fluid affects particles but not v.v.
Polar coordinates (r , θ), velocity (u, v), as α → 0:

(uf (r , θ), vf (r , θ))
T =

(

(1 −
1
r2 ) cos θ,−(1 +

1
r2 ) sin θ

)T

Then γ → ∞ (heavy particles), γ/β = O(1):

up
∂up

∂r
+

vp

r
∂up

∂θ
−

v2
p

r
=

β

γ
(uf − up),

up
∂vp

∂r
+

vp

r
∂vp

∂θ
+

upvp

r
=

β

γ
(vf − vp),

1
r
∂

∂r
(rαup) +

1
r
∂

∂θ
(αvp) = 0



PARTICLE PATHS, β/γ = 5
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‘Separation’ angle θsep for increasing values of inter-phase drag parameter β/γ.. Note

as β/γ → 0+, θsep → π/2 and as β/γ → 8− , θsep → π, as shown as dashed lines



CONDITIONS ALONG θ = π

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

x

u p Inc. β/γ

-14

-12

-10

-8

-6

-4

-2

 0

 2

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

x

Inc. β/γ

lo
g(
α
)

As r → 1, can show up = up0 + (r − 1)up1 + . . ., where

up0 = 0, up1 =
β

2γ

(

1 +

√

1 −
8γ
β

)

for β/γ < 8,

up0 6= 0, up1 = −β/γ for β/γ > 8



ISSUES ARISING

Particles can ‘penetrate’ cylinder surface

Solution discontinuous at β/γ = 8

‘Shadow’ regions

Since on θ = π, rαup = constant, if up → 0, α → ∞:
violates α << 1 condition

A mixed elliptic/hyperbolic system



PROBLEM 2: SETTLING UNDER GRAVITY

Consider the stationary (1D) distribution of heavy (γ >> 1) dust
phase ‘settling’ under uniform gravity in an upwards
propagating fluid; the dust-phase weight balanced by upwards
motion of fluid. Fluid particle free and moving with constant
speed V0 for y < 0, y = 0 is location of stationary front.

α(y)

V0



INCLUDE (FLUID) VISCOSITY, AND (NOTIONALLY)
ASSUME α = O(1))

.
Problems of this type considered by Druzhinin (1994, 1995),
with some inconsistencies.
Particles affect fluid and v.v. Problem reduces to

Vp = 0

((1 − α)Vf )
′ = 0

Vf V
′

f +
Vf

1 − α
= γ − 1 +

2
Re

V ′′

f −
2

Re
α′V ′

f

1 − α

Assume Vf (y = 0) = V0 (constant) and α(y = 0) = 0.



(BASEFLOW) RESULTS FOR V (y) AND α(y)
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(a): γ = 2, V0 = 0.5, Re = 1, 2, 4, 8, 16, 32 (solid lines), the dashed lines show the Re ≫ 1 solution, (b):

V0 = 1.5, Re = 20, γ = 4, 8, 16, 32 and (c): γ = 4, Re = 20, V0 = 0.5, 1, 1.5, 2, 2.5



SPATIAL LINEAR STABILITY IN THE INVISCID LIMIT

Can perturb the inviscid system for a steady base flow via

α = αB(y) + ǫα̃(y)e−iωt ,

Vf = VfB(y) + ǫṽf (y)e
−iωt ,

Vp = 0 + ǫṽp(y)e−iωt ,

Here ǫ << 1, and ω is a real frequency.
Focus on y → ∞:

αB → α∞ = 1 −

√

V0

γ − 1

Vf → V∞ = ((γ − 1)V0)
1
2



LINEAR STABILITY IN THE INVISCID LIMIT

(CONTINUED)

Further supposing (α̃(y), ṽf (y), ṽp(y)) = (α̂, v̂f , v̂p)eiky Then

k2 +k
(

−
2ω

V∞

+
2

iV∞(1 − α∞)

)

+

(

ω2(γ + α∞(1 − γ))

α∞V 2
∞

−
ω

iV 2
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)

= 0

Considering the limit ω → ∞, we write k = ωK , K = O(1),

K =
1

V∞

±
i
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√

γ(1 − α)

α∞

Spatial growth is
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
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


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Spatial growth rate proportional to frequency - implies problem
ill-posed.



LINEAR STABILITY, FINITE Re

Equation for k now a cubic:

k3
(

2α∞V∞

(1 − α∞)ωRe

)

+ k2

(

iV 2
∞α∞

ω(1 − α∞)
−

2α∞

Re(1 − α∞)

)

+k
(

2α∞V∞

(1 − α∞)2ω
−

2iV∞α∞

1 − α∞

)

+

(

iω
(

γ +
α∞

1 − α∞

)

−
1

(1 − α∞)2

)

= 0

As ω → ∞, Re = O(1), two families:-

k → ±

(

−(iωγ(1 − α∞) + α∞)Re
2α∞

)

1
2

k →
ω

V∞

−
iγV∞(1 − α∞)Re

2α∞



PROBLEM 3: BOUNDARY LAYERS IN A DILUTE PARTICLE

SUSPENSION

Foster, Duck & Hewitt (2006) - mixed parabolic/hyperbolic
problem

ue ∼ xm

g

|2θ| = 2mπ
m+1

Flow geometry appropriate for Falkner–Skan-type edge conditions, although solutions not restricted to have self

similarity. Assume that local gravitational forcing is aligned as shown and thus the upper boundary layer is such that

K > 0 whilst the lower boundary layer has K < 0, where K =
gLRe1/2

U2
∞

(1 − 1
γ
)



DUSTY BOUNDARY-LAYER EQUATIONS

Usual boundary-layer scalings

uux + vuy + p̄x = uyy − βα(u − up),

upupx + vpupy =
β

γ
(u − up),

upvpx + vpvpy =
β

γ
(v − vp)−K cos θ,

ux + vy = 0,

upαx + vpαy = −α(upx + vpy ).

u = v = 0 on y = 0, u → ue(x) as y → ∞

Choice of boundary conditions for the particle phase is
somewhat subtle; notionally

up → upe(x), and α → αe(x), for y → ∞.

Will consider Ue(x) = xm, 0 ≤ m ≤ 1



THE OUTER FLOW AND CONDITIONS AT THE

BOUNDARY-LAYER EDGE

upeu′
pe =

β

γ
(ue − upe), upeE ′

e + E2
e +

β

γ
Ee = −

β

γ
u′

e, upeα
′
e + αeDe = 0, (1)

where Ee(x) = ∂vp/∂y(y → ∞), upe(x) = up(y → ∞) and
De(x) = D(y → ∞) = u′

pe + Ee are the relevant functions evaluated as y → ∞ Also

upeD
′
e +

β

γ
De + (u′

pe)
2 + E2

e = 0.

upe

[

u′
pe +

β

γ

]

=
β

γ
ue,

(

upe
d

dx
+

β

γ

)(

upe
α′

e

αe

)

= (u′
pe)

2 + E2
e .

For given fluid edge behaviour ue(x), can determine streamwise particle motion upe(x),

then particle motion normal to boundary Ee, and finally external volume fraction αe(x).



EDGE RESULTS
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Development of the edge quantities (a) upe and (b) αe; solid
m = .50; dashed m = .211; dotted m = .10 , all with β/γ = 1; K
not relevant here.
Can show αe ∼ 1

x−x0
if m > mcrit - violates α << 1



BOUNDARY-LAYER RESULTS
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SINGULARITIES INSIDE THE BOUNDARY LAYER

Taking K = 0 (for simplicity - particle flow can be solved
explicitly on y = 0):

αw =
α0

Upw
=

α0

1 − βx
γ

, Upw > 0.

Therefore volume fraction is singular part way along wall, and
so model breaks down (Wang & Glass, 1988 continued their
computation through the singularity).
Can be a ‘race’ between inner and outer singularities.



K < 0

If gravitational forces act away from the wall, close to wall
characteristics directed outwards; local analysis (as x → 0)
reveals a discontinuity in α along y = ycrit = −K cos θ/Up0

where up = Up0 + . . .:
for y < ycrit , α = 0 (particle free), for y > ycrit , α = α0



CONCLUSIONS
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CONCLUSIONS

The (generally) well-accepted dusty gas equations have a
number of shortcomings

Ill-posedness commonplace

Singularities often occur

Regions where it appears not possible to determine details
of particulate phase

Little control of boundary conditions - particles can
’penetrate’ solid surfaces

Fundamental (mathematical) problem: leads to mixed
elliptic (or parabolic)-hyperbolic systems

Computations and analyses inform each other

Contaminants can have a profound effect!


