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Motivation

CFD solutions for 
complex problems 
have been made 
possible by 
increases in 
computational and 
algorithmic power

"Metric" components of LAV model

Figure 12. Launch Abort Vehicle (LAV) geometry with wind-tunnel sting

tower (not visible in Fig. 12). Aerodynamic forces and moments are evaluated on the “Metric” portion of
the model, as shown in Fig. 12, which is similar to earlier wind-tunnel tests for this model. We evaluate the
proposed approach for three Mach numbers (0.5, 1.1, 1.3), and a range of angles of attack from �25� to 6�.

The flow around this vehicle is characterized by blu�-body aerodynamics. An example flow-field is shown
in Fig. 13 for freestream conditions M⇥ = 1.1 and � = �25�. There is a sharp lip near the shoulder of
the heat-shield that initiates a significant wake behind the vehicle. In addition, small regions of separated
flow are observed downstream of the abort motor nozzles. While such geometric complexity and “unsteady”
flow features are a departure from the smooth and steady flow assumptions made in the present adjoint
error analysis, it is important to evaluate the usefulness of the proposed approach on these cases. The size
of aerodynamic databases needed for the development of such a vehicle creates an engineering requirement
to do the best job possible with inexpensive solvers, such as this steady and inviscid analysis. E⌅cient use
of inexpensive simulations reduces the number of cases that require unsteady and/or viscous analysis. The
run-time of a typical adjoint-based mesh refinement case presented in this section is roughly 30 minutes on
16 CPUs, while unsteady and viscous simulations may require hours of wall-clock time. Furthermore, the
adjoint error estimates obtained in these inexpensive simulations may provide guidance for mesh refinement
in the higher-fidelity solvers.

We choose a functional for the adaptation that is a linear combination of normal and axial forces evaluated
on the Metric portion of the model

J = CN + 0.2CA (16)

We experimented with several functional formulations and found that Eq. 16 results in good mesh convergence
of both forces and moments. The error tolerance for this functional is set to 0.05 in all cases considered. We
use the decreasing threshold adaptation strategy outlined in Sec. III, where we start with ⇥ = 32 in Eq. 11
and reduce it by a factor of two on each subsequent cycle. The surface triangulation is created directly from
a CAD model of the vehicle and contains roughly 380,000 triangles. This triangulation is fixed in all mesh
refinement studies.

Before presenting results for the Mach number and angle of attack sweeps, we first examine the cell-wise
error contributions to the output functional on a sample case. We choose the case shown in Fig. 13 at M⇥ =
1.1 and � = �25�, and construct a functional error-map using a uniform mesh with six million cells. The
left-side of Fig. 14 shows the adjoint solution for the density variable, which represents the influence of point
sources of mass on the output functional. Note the large values near the heat-shield shoulder, the continuity

Figure 13. Mach number contours around LAV (M⇥ =
1.1, � = �25�)

of the adjoint solution across shocks, and the up-
wind bias due to the supersonic nature of the flow.
The influence of the wake is relatively small for this
case. We use the adjoint solution in conjunction
with the flow residual errors to form the refinement
parameter, Eq. 10, which is shown on the right side
of Fig. 14. Regions of the field colored in grey-scale
mark cells that do not exceed the refinement thresh-
old. The features in the grey-scale region highlight
the zone of dependence for the output functional,
which is stretched in the cross-flow direction due to
the mild supersonic conditions. The black contour
line marks the boundary of the refinement region,
with the colored region denoting cells that exceed
the refinement threshold, and therefore require re-
finement. Notice that the error scale is logarithmic,
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Mach number distribution

The Launch Abort Vehicle simulation above 
took 30 minutes to complete on 16 CPUs 

(Nemec et al, 2008, CART3D group)



AEROSPACE COMPUTATIONAL DESIGN LABORATORY  

Mesh “convergence” comparison
(Chaffin, 2009, DPW4 Presentation)

Same CFD code (NSU3D) run on two “best practice” 
meshes of about 40 million nodes

Which solution is most realistic?

How would this level of uncertainty be detected in practice?
6 Company Confidential 

Case 1.1: CP contours: M=0.85, CL=0.50,   
                             Re=5x106 

AIAA DPW4 

NASA mesh
CD=277 counts

CESSNA mesh
CD=262 counts
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Error met or

time over

Output-based adaptation

Objective: Increase reliability of CFD by 
estimating and autonomously controlling 

error in outputs (e.g. drag or lift)

• Problem
• Output
• Max output error
• Max time

Estimate 
error in 
outputs

Calculate 
flow and 
outputs

Adapt grid 
to control 

error

• Flow solution
• Outputs
• Estimated errors

?
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Higher-order Discontinuous Galerkin 
Finite Element Method (DGFEM)

• Approximations are degree p polynomials within

elements but discontinuous between elements

DGFEM approximation: Find uh,p � Vh,p such that

Rh,p(uh,p, vh,p) = 0, ⇥vh,p � Vh,p

u(x,y)

x
y

T
H

uh,p(x, y)
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Why higher order for CFD?

• Higher-order methods known to be more 
efficient than lower-order for problems with 
smooth flows

• Aerospace flows typically have limited 
smoothness

• Can higher-order methods be beneficial in 
aerospace applications?

• Adaptation key to realizing benefits of higher-
order discretization on practical problems
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Outputs & adjoints
• Jh,p(uh,p) is an output such as lift, drag, ef-

ficiency, etc.

• Consider a (infinitessimal) perturbation to

the residual such that,

Rh,p(uh,p + �uh,p, vh,p) + (�r, vh,p) = 0

• The adjoint ⇥h,p ⇥ Vh,p is the sensitivity of

the output to a residual perturbation,

�Jh,p � (�r,⇥h,p)

• Interpretation: adjoint is transfer function

between �r and Jh,p.

• In the infinite-dimensional case, the adjoint

satisfies a linear PDE.

Primal (Mach)

Transonic RANS example

Drag adjoint (mass)
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Outputs & adjoints
• Jh,p(uh,p) is an output such as lift, drag, ef-

ficiency, etc.

• Consider a (infinitessimal) perturbation to

the residual such that,

Rh,p(uh,p + �uh,p, vh,p) + (�r, vh,p) = 0

• The adjoint ⇥h,p ⇥ Vh,p is the sensitivity of

the output to a residual perturbation,

�Jh,p � (�r,⇥h,p)

• Interpretation: adjoint is transfer function

between �r and Jh,p.

• In the infinite-dimensional case, the adjoint

satisfies a linear PDE.

Primal (Mach)

Transonic RANS example

Drag adjoint (mass)

Drag error indicator, ⌘

Transonic RANS example
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Continuous Optimization: Mesh-metric Duality
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• (Intractable) discrete optimization problem

T �
h = arg inf

Th

E(Th) s.t. C(Th) = Cost

• Continuous relaxation (Loiselle, 2009)

M�
= arg inf

M
E(M) s.t. C(M) = Cost
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Local sampling
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• For each configuration, solve local problems keeping states outside of ⇥0 fixed

• Determine error estimate ��i = Rh,p(u
�i
h,p, ⇤h,p+1|�0

)

• Produces a set of pairs, {M�i , ��i}

Yano & Darmofal, 2012
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MOESS Algorithm 
(Mesh Optimization via Error Sampling & Synthesis)

• Solve flow and adjoint on current grid

• Determine error-metric gradients via local sampling

• Utilize steepest descents algorithm to improve metric

• Remesh using improved metric

Yano & Darmofal, 2012
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Impact of Adaptation on Higher-order Efficiency
Subsonic Euler

When singularities are present, adaptive refinement 
critical to realize benefits of higher order 

NACA 0012, M = 0.5, � = 2�
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• Adaptive refinement is per-
formed at 2, 500 and 5, 000
DOFs generating “optimal”
meshes

• Uniform refinement (each el-
ement subdivided into four)
is performed

• Uniform refinement compared
to adaptive refinement at 10, 000
and 20, 000 DOFs
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Impact of Adaptation on Higher-order Efficiency
Subsonic Euler

Adaptive mesh resolves trailing edge singularity more effectively 

20K DOF mesh
uniformally refined from 5K DOF meshOptimized 20K DOF mesh

NACA 0012, M = 0.5, � = 2

�

p = 3: Distribution of (log) elemental error (log10 ⇥)
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Adaptation, higher-order, and RANS
Subsonic RANS

Uniform refinement of 40K DOF to 160K DOF

Error indicator for160K DOF, p=3

Yano, Modisette, Darmofal 2011
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RAE2822, RANS, M = 0.3, Re = 6.5⇥ 106, � = 2.31�

Adaptive 160K DOF

To see full benefit of higher-order approximations, 
solution irregularities must be controlled: 

adaptation is critical
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MDA-3 RANS
Lift adaptation,  
boundary conforming

M = 0.2, Re = 9⇥ 10
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MDA-3 RANS
Lift adaptation,  
boundary conforming

M = 0.2, Re = 9⇥ 10
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• An appropriate mesh is critical (and subtle)

• Consider � sweep using � = 8.1� optimized grid

cl cl error estimate
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Multi-element Airfoil RANS Case:
Higher-order Workshop (2012)
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1st International Workshop on High-Order CFD Methods, January 7-8, Nashville, TN C2.2 6/11

~1% error

~10% error

1000 work units

• UMich and Bergamo results use 
uniform mesh refinement

• Wyoming is an hp adaptive result

• MIT (h-adaptive) results 10-100 x 
more efficient

• MIT work includes adaptive time 
from a coarse initial mesh

• With adaptivity, p=2 error drops 
rapidly with small additional work
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Cut-cell vs. boundary conforming
Transonic RANS RAE2822, RANS, M = 0.729, Re = 6.5⇥ 106, � = 2.31�
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Yano, Modisette, Darmofal 2011
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Laminar delta wing example
Higher Order Workshop Test Case 2012:

Adaptation critical for achieving higher-order convergence

(apriori meshes are uniform refinements)

M = 0.3, Re = 4000, ↵ = 12.5�
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Key take-away

Adaptation is critical to realize the 
performance benefits of higher-order 

discretizations on aerospace applications
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Adaptive higher-order methods:
Current Status & Challenges

• Higher-order 2D & 3D RANS (including shocks) 
demonstrated on a priori meshes (Bassi; Darmofal; 
Fidkowski; Hartmann; Mavriplis; Peraire, etc.)

• Robust anisotropic adaptation demonstrated for 
2D steady RANS (Darmofal; Fidkowski; Hartmann)

• Proof of concept demonstrations for adaptive 3D 
RANS (Darmofal; Fidkowski; Hartmann)

• Challenges:  higher-order adaptive meshing; 
robustness for under-resolved RANS; unsteadiness
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Questions?



AEROSPACE COMPUTATIONAL DESIGN LABORATORY  

Affine-invariant metric framework
• Employ affine-invariant description of a metric space (Pennec et al, 2006)

S� = log

⇣
M�1/2

�0
M�M�1/2

�0

⌘

• S� (the step matrix) can be decomposed into S� = s�I + ˜S�

• s� is isotropic and controls the area change

• ˜S� controls orientation and stretching changes

• First-order optimality conditions become

⌅��
⌅s�

� ⇥
⌅⇤�
⌅s�

= 0

⌅��

⌅ ˜S�

= 0
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Error model synthesis
• Define logarithmic error model f�i ⇥ log(��i/��0)

{M�i , ��i} ⇤ {S�i , f�i}

• Perform a least-squares fit to synthesis f�(S�) = tr(R�S�):

R� = argmin

Q2Symd

n
configX

i=1

(f�i � tr(QS�i))
2

• This gives ��(S�) = ��0 exp(r�s�d) exp
⇣

tr

⇣
˜R�

˜S�

⌘⌘

• For isotropic error and meshing this model reduces to,

�iso

� (h) = ��0

✓
h

h0

◆riso

�
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Continuous Metric Optimization

• Problem Statement: Seek optimal metric field

M⇤ = argmin
M

E(M) s.t. C(M) = Cost

• Choose E(M) =
P

 ⌘(M)

• Choose C(M) =
P

 ⇢(M)

• ⇢ are the DOF in region .


