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Fig. 10. Multidomain grid with six subdomains for the Ringleb problem,

o Limited o Powerful,
o Inflexible @ Robust
o Complicated o Flexible



1983: Flow Over a Cylinder

Development of
Spectral Element
Methods for

Compressible @ Problem (Hussaini):

Flow Problems

SRS BT Find, precisely, the transonic Mach number for a cylinder

The Past: The
Origin of Spectral
Multidomain

Y
T - NS

@ Approach:

o Chebyshev spectral method
o Euler Gas-Dynamics equations

(Contour Plot: Hafez & Wahba, 2004)
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Timeline

Development of
Spectral Element
Methods for
Compressible
Flow Problems

David A. Kopriva 1980's : Baby Steps

o Strong form Chebyshev collocation

The Past: The
Origin of Spectral
Multidomain

1990's : Search for the Ultimate Scheme™
o Cell Average FCT (Karniadakis)
o Penalty method (Hesthaven, Gottlieb, Funaro)
o Staggered Grid (Kopriva)

1999+ : Rise of DG

2010s+: Large scale applications



Strong Form Chebyshev

Development of .

SRl Features:
ethods for . . . .

Compresile @ Standard Chebyshev Collocation in interiors

Flow Problems .. . - .

o (Characteristic) Patching conditions at interfaces

Pros:

Th.e .Past: The ) )

Origin of Spectral @ Lower cost per DOF than single domain

Multidomain

David A. Kopriva

@ Spectral accuracy
Cons:
@ Mesh required continuous metrics
@ Complicated to implement
@ Not robust

o
N4
oD
A 4

S m——

Subdomain/Subdomain Cross Inflow/Wall ~ Subdomain/Wall



90's: Weak Imposition of BCs

Development of . .. . o g
SRS \Weak imposition gives full unstructured mesh flexibility.
Methods for
Compressible
Flow Problems

St A\ [aite @ Spectral Penalty method (Hesthaven)
e Pacts The o (+) Natural imposition of conditions for advection-diffusion
ot e operators

(+) Stability proof for linearized compressible Navier-Stokes
(=) Penalty parameter
(—) Stiff
(=) Not Conservative
(=) Ad-Hoc treatment at corners and when advection speed
vanishes

o Staggered Grid Method (Kopriva)
(+) Conservative

(+) Easy to implement

(+) No special corner point operations

(+) Robust

(—) Weak instability for periodic advection problems




Staggered Grid Approximation

Development of . . . .

Spectral Elemert @ Solution and fluxes in different polynomial spaces
Methods for
Compressible

Flow Problems Q c PN X PN
David A. Kopriva

FepNttx pV
The Past: The
Origin of Spectral Gc PN % PN+1

Multidomain

@ Only fluxes on boundaries
@ Uses Riemann solvers on discontinuous solutions

R N R D O N N s




00's : DG Spectral Element Method (DGSEM)
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David A. Kopriva ° Conservative 3 :
o,
e Easy BCs PN ]
@ Variational Formulation
The Present: DG = 5L 4
e Clet o Broad Framework 8
ramewor| EJ/ -6 b ]
&
Why DG over staggered grid? =4 7t 1
. 0, H O
o Faster: 2QA> faster (Simpler 8| | 7o STACo Max ]
Interpolations)
_9 1 1 1 1 1 1
@ More Accurate: 10x on test 3 4 5 6 8 9 10 11

1
7
problem N




DGSEM Framework: Conservation Laws

Development of .
iR Problems modeled by a system of conservation laws:

Spectral Element
Methods for

Compressible -
Flow Problems Qt + V . f — 0
David A. Kopriva
fT’: i + )
Examples:
The Present: DG
L o Euler Equations
p . pii )
g=1| pu |, f'=|pu@u+pl |, [f'=0
pE pul
o Navier-Stokes Equations
0
=l -
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Subdivide domain into multiple elements

The Present: DG
Spectral Element
Framework




Multi-Element Decomposition
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David A. Kopriva

o Arbitrarily complex

o Conforming or \
nonconforming
The Present: DG 2
B o Moving or stationary
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The Present: DG
Spectral Element
Framework

Multi-Element Decomposition: 3D

(Courtesy of G. Gassner)



Mapping to Reference Element

Development of
Spectral Element

Methods for Transform:
Compressible
Flow Problems x=X (5, T)
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The Present: DG
Spectral Element
Framework




Equations on Reference Element
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Bt A, (i Strong form of conservation law:

@+V-f=0

The Present: DG h
Spectral Element whnere

Framework q;: Jq
Ji=Tal - (f - qx,)

Jacobian satisfies Geometric Conservation Law:

Jr +Ve-0(J) =0,



The DG Spectral Element Framework
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Bt (s [epie Three characteristics:

Q@ Approximate
The Present: DG
Spectral Element

Framework q ~ Q (S ]PJN, f ~ F (& ]PMOn E
Q@ Weak form

[(@+v-F)o=o

E

@ No continuity on ¢ € PV between elements



DG Formulation
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Camprersii: Integrate by parts

S ol E/(M)dﬁ +3 é Foeods E/ F-Vgds =0

David A. Kopriva

The Present: DG
Spectral Element
Framework

Replace boundary fluxes with Riemann solver
/Qt¢d§+/ﬁ* -ﬁ§¢d5—/ﬁ-v¢d§ =0 FormlI
E OE E

Maybe integrate by parts again

Quode F—F* . fpe)¢dS — | V- Fode =0 Form I1
E/t +/( Tlg) / orm

OF E



Choices, Choices, Choices
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Gl We actually have a framework from which to derive methods:

Flow Problems

Tl . i
© Quad/Hex or Tri/Tet elements?
@ Nodal or modal basis?
g&fﬁiﬁmsﬁ @ What polynomials?
© Approximate boundaries with different orders?
@ Approximate solution and fluxes with different orders?
@ Exact integrals or quadrature?
@ Inexact or exact quadrature?
© Form | or Form 11?7
Q MM

Too many choices can be overwhelming.



DG Spectral Element Approximation
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The Present: DG
Spectral Element
Framework




Easy to Implement and Effective Approximation

Development of
Spectral Element
Methods for
Compressible

Flow Problems “Classical” spectral element approximation:

David A. Kopriva

Q Quadrilateral/ Hexahedral elements
= Efficient tensor product bases
The Present: DG

Spectral Element @ Nodal basis
= Easy for nonlinear/variable coefficient/general complex
geometry problems
@ All approximations at same polynomial order
= Simplifies coding

@ Legendre basis
= Spectral accuracy, conditioning

@ Gauss-Type quadrature



Implementation
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Flow Problems Solution and fluxes by polynomials in (Lagrange) nodal form

David A. Kopriva

N N
Q=> > Qn,men(é)zm(n)

n=0m=0

The Present: DG

Spectral Element N N

S F=23 > (Fnmd+ Gnm)ln(§)lm(n).
n=0m=0

Integrate by parts 1x

/aa_?‘bi,jdf-F/F*-ﬁ¢i7de—/F.v¢i7jd§:0
E

OF E

With ¢; 5 = £;(£);(n).




Apply Quadrature to Each Integral
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Time derivative integral

/ LRGN ey odean
Ly dt

Z Z dQ gk’ nl z )g] (nl)wl(f)wl(n)

The Present: DG
Spectral Element
Framework

k=0 =0
dQi; (€. ()
= Twl w] 5

etc.




Spatial Discretization
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N
dQL ~ £;(1 ~ l;(—1 - A
Qs { B (1,7) ) — B (1) SO 4 ZFk,jDE,?}
w; w; k=0
The Present: DG N
Spectral Element - - V(=1 ~ ~
+ { & (6 )2y - &6 )L 4 S Gi,kDé’zl’} =0
Wy Wy k=0

Primary Work:
o Computation of fluxes f‘k,j and Gi’k from solution

o Computation of Riemann solver F*(+1,7;) and G*(&;, £1)
o Series of dot products (Gauss)

@ Series of Matrix-Vector products
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The Present: DG
Spectral Element
Framework

DGSEM Time Derivative Algorithm

Gauss-Lobatto Version:

for j =0to M do
F = cFlux(Qj)

F’' = MatrizTimesVector(D, F)
Q] - _Fl
Qo,j = Qo,j — 7 o* RiemannSolver(Qe“,Qo J,ﬁl‘)

QN,J = QN,J- —b *RzemannSolueT(QNj,Q xt AR)
end

for i =0to N do
G = yFlux(Q;)
G’ MatrizTimesVector(f), G)
Ql = Qz
QI 0= Q.L 0 — bB * RiemannSolver(QS™, Qi 0, 1} By

Qi,vr = Qi,m — b x RiemannSolver(Q; m, Q¢ aT)
end




DGSpectral Element Approximation

Development of See... It's Not That Bad!
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The Present: DG
Spectral Element
Framework




What We Know
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Form | and Form Il are algebraically identical
Gauss has better Phase/Dissipation properties

The Present: DG Gauss-Lobatto can take larger time steps

Spectral Element
Framework

Gauss is more robust

Gauss is slightly more efficient than Gauss-Lobatto

Mesh can be moved Free-Stream Preserving with spectral and
full time accuracy

@ Suitable for massive parallelization

o Can be used for industrial strength™applications



Integrate By Parts 1X or 2X?
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The Present: DG
Spectral Element
Framework

(Kopriva and Gassner, 2010) For quadrilateral/hexahedral tensor
product discontinuous Galerkin approximations to systems of
hyperbolic conservation laws with either Gauss or Gauss-Lobatto
quadratures the two forms are algebraically equivalent as long as
one uses global polynomial representations for the flux and solutions.




Gauss Has Better Dispersion Erro
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The Present: DG
Spectral Element g K
Framework

(a) Dispersion relation (b) Logarithm of dispersion error

Re(Q)

(a) Dispersion relation (b) Logarithm of dispersion error



Gauss Has Better Dissipation Error
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The Present: DG )
Spectral Element P %
Framework

,
25

(a) Dissipation relation (b) Logarithm of dissipation error

FIG. 6.1. Imaginary part of the physical mode for the Gauss DGSEM scheme with N =1 up
to N =10. In the logarithmic plot, the error is cut off at 10710 to avoid numerical noise.

Im(2)
T

L ,
=z * =5 25
K

(a) Dissipation relation (b) Logarithm of dissipation error



Gauss is Slightly More Efficient Overall
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David A. Kopriva -3 —0- Gaussl| |- 2f--R -o- Gauss| |
‘ —e— Lobatto | & —e— Lobatto |

The Present: DG
Spectral Element
Framework

log, 0(Error)
&
A

Log‘a(Error)

) =

, N
NS S

R ™ 7

20 40 60 80 100 120 20 40 60 80 100 120
CPU Time CPU Time (Sec)

Figure: Maximum error as a function of work for the Gauss and Lobatto
approximations. Left: Uniform mesh. Right: Non-Uniform Mesh



Free-Stream Preservation and the Geometric
Conservation Law
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Acosta & Kopriva, 2012) Suppose that at time ", = ¢, where
i, 2

¢ is a constant vector. Define Q; ; = Qi ;/J; ;, where J; ; is the
qnaend|  solution of the GCL. Then

Spectral Element
Framework

Qn+1

Spectral + High order time accuracy when moving mesh by:
o Method 1: Exact differentiation of the mapping.
o Method 2: Integration of an acceleration equation.

o Method 3: Numerical differentiation of the mesh position via
the time integrator (Inverse operator).



Example: Time Accurate Moving Mesh
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Example: Time Accuracy on Moving Mesh
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The Present: DG
Spectral Element
Framework

1,

10-10 ! ! ! !
0.0000625  0.000125 0.00025 0.0005

logy, (At)
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Massive Parallelization

Speedup

G. G

Strong Scaling - Jugene

assner

%%

30000

25000

20000

15000
10000
— Theoretical
5000 ~Limit: 1 Elem/Proc (N=7, 512 DOF) T
~Limit: 27 Elem/Proc (| 13824 DOF)
5000 10000 15000 20000 25000 30000
Nb. of Procs
Strong Scaling - Jugene up to 131072 Processors
100%
= a7
I
&
—Theoretical |
20000 40000 50000 80000 100000 120000

Nb. of Procs
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Industrial Strength Applications:
Injector Acoustics

(Courtesy of G. Gassner)

Natural Gas
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(Courtesy of G. Gassner)

SPL[dB]

SPL[dB]

Industrial Strength Applications: Natural Gas
Injector Acoustics
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The Future: What We Still Want to Know

Development of
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Soees @ How mesh affects accuracy and time step

Serft) s e @ How to couple (moving) material interfaces
@ How to move meshes efficiently

@ How to solve time accurate problems efficiently

o Implicit Schemes
o Preconditioning
o Local Time Stepping

The Future

@ How to guarantee stability - Aliasing removal
@ How to compute shocks
o Adaptation

AND



1983 + 30: Flow Over a Cylinder
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Find, precisely, the Mach number where flow over cylinder goes
transonic.

David A. Kopriva

The Future

Y
A
\@/
C

(Contour Plot: Hafez & Wahba, 2004)



1983 + 30: Flow Over a Cylinder

STILL NOT DONE YET!
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