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Overview (AIAA-2007-4048)

« Two principal intertwined themes

— 1: NASA simulation capability risks becoming commoditized
» Rapid advance of parallelism (> 1M cores)
« Fundamental improvements in algorithms and development tools not
keeping pace
« Hardware and software complexity outstripping our ability to simulate
(J. Alonso)

 Clear vision of enabling possibilities is required
— What would you do with 1000 times more computational power ?

— 2: HPC Resurgent at National Level : Competitiveness
« Aerospace industry is at the heart of national competitiveness

 NASA is at the heart of aerospace industry
« Aeronautics seldom mentioned in national HPC reports



ARMD’s Historic HPC Leadershlp
(Code R)

ILLIAC IV (1976) __
National Aerodynamic Simulator (1980’s) §

1992 HPCCP Budget:

— $596M (Total)
« $93M Department of Energy (DOE)

« $71M NASA
— Earth and Space Sciences (ESS)
— Computational Aerosciences (CAS)

Computational Aerosciences (CAS) Objectives (1992):

— "...Integrated, multi-disciplinary simulations and design
optimization of aerospace vehicles throughout their mission
profiles”

— “... develop algorithm and architectural testbeds ... scalable to
sustained teraflops performance”



Algorithm Development
Opportunities

* Modest investment in cross-cutting algorithmic work

would complement mission driven work and ensure

continual long-term progress (including NASA expertise for
determining successful future technologies)

— Scalable non-linear solvers

— Higher-order and adaptive methods for unstructured meshes
— Optimization (especially for unsteady problems)

— Reduced-order modeling

— Uncertainty quantification

— Geometry management

Current simulation capabilities (NASA/DOE/others) rests on
algorithmic developments, many funded by NASA

Revolutionary Computational Aerosciences Program



From Petascale to Exascale

 Petascale Is here

— National HPC centers > 1Pflop oo E=Hssts

* Exascale iIs coming

— Up to 1B threads

Deep memory hiearchies
Heterogeneous architectures
Power considerations dominant

Petascale at the mid-range
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Getting to Exascale

« Strong scaling of current simulations
— Running same problem faster
— Highly unlikely

» Weak scaling of current simulations

— Increasing problem size with hardware capability

« eg Climate simulation: Insatiable resolution
requirements

— Algorithmic consequences

 Implicit time stepping will be required to maintain
suitable real time climate simulation rates
— 5 years of simulation per wall clock day



Aeronautics/Aerospace HPC

« Aerospace is engineering based discipline
« HPC advocacy has increasingly been taken up by
the science community

— Numerical simulation is now the third pillar of scientific

discovery on an equal footing alongside theory and
experiment

— Increased investment in HPC will enable new scientific
discoveries

« Engineering is not discovery based

— Arguable more difficult to reach exascale
 e.g Gradient-based optimization is inherently sequential



Exascale Software Study

Multi-Scale, Multi-Model

V&V & Uncertainty Quantification

Optimization

Implicit Solvers

Adaptive Mesh Refinement

Data analysis

Linear and nonlinear solvers

Graph algorithms

Agent-based modeling

High-precision arithmetic
High-dim. parameter spaces
Data assimilation

A

From: DARPA/IPTO/AFRL Exascale Computing Study (2008)

http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm
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Reaching Aeronautics Exascale

DPW5 Summary Results
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* Weak Scaling P
— Sitill only beginning to understand A :
resolution requirements ; S ERET =
— Need dramatically more spatial e [P
resolution to increase fidelity e
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— Most high-fidelity simulations have JFP b o
many time scales vy i ' -

GRDFAC = 1/GRIDSIZE(2/3)

— Learning more about true resolution
requirements as formal error
estimation becomes part of CFD
process

— Towards LES/DNS of full aircraft or
propulsion systems
« Estimates by Spalart et al. (1997)




Aeronautics Exascale

Overflow/RCAS CH-47 simulation
(Dimanlig/Bhagwat — AFDD, Boeing, ART)

Many problems do not require
ever-increasing spatial
resolution

10M or 100M grid points “good
enough” for engineering
decisions

Long time integration of stiff

Implicit systems makes for

expensive simulations o |
Airfoil optimization for dynamic stall

Gradient-based optimization is (Mani and Mavriplis 2012)
sequential in nature and

becomes expensive
(especially time-dependent
optimization) - ok

0.4 0.6
X

Base Optimized



Aeronautics Exascale

* Problems with limited opportunities for
spatial parallelism will need to seek other
avenues for concurrency
— Parameter space

 Embarrassingly parallel

— Time parallelism
* Time spectral
« Space-time methods

— Alternate optimization approaches
« Hessian construction for Newton Optimization



Time-Spectral Formulation
%(\/U) + R(U,X(t), (1) + S(U.fi(t)) = 0

> Discrete Fourier and Fourier inverse transform
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Time Spectral Formulation
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» Discrete equations
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» Time-spectral method may be implemented without
any modifications to an existing spatial discretization,
requiring only the addition of the temporal
discretization coupling term

» All N time instances coupled and solved
simultaneously

» Extensions possible for quasi-periodic problems



Formulation
» Parallel Implementation

o Parallelism in time and space.

Two types of inter-processor
communication: communication

MPI Communicator in time

between spatial partitions and

| MPI Communicator in space

communication between all of the
time instances reyseay 0 Y O ' ' m
1 1 1
[time instance N=2 n I H I n I -
) | | | |
For multicore and/or peyerervenl) 0 | B ln ‘B |

multiprocessor hardware nodes
within a distributed memory t
parallel machine, the optimal "
strategy consists of placing all T
time instances of a particular
spatial partition on the same node

spatial partition 2

spatial partition 3

CFD Lab
University of Wyoming



Parallel Time Spectral Simulation
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BDF2: 50 multigrid cycles per time step, 360 time steps per revolution, 6 revolutions

8 processes, 8 spatial partitions: 24.1137 X 50 X 360 X 6 = 2,604,028 s
BDFTS: N = 7, 300 multigrid cycles per revolution, 6 revolutions

56 processes, 8 spatial partitions: 31.167 X 300 X 6 =56,101.3 s
BDFTS: N =9, 300 multigrid cycles per revolution, 6 revolutions

72 processes, 8 spatial partitions: 32.935 X 300 X 6 =59,282.5s



Speedup

Time Spectral Scalability
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« Coarse 500,000 pt mesh with limited spatial parallelism
* N=5 time spectral simulation employs 5 times more cores



Second-Order Sensitivity Methods

« Adjoint is efficient approach for calculating first-
order sensitivities (first derivatives)

« Second-order (Hessian) information can be
useful for enhanced capabillities:
— Optimization

« Hessian corresponds to Jacobian of optimization problem
(Newton optimization)

— Unsteady optimization seems to be hard to converge
« Optimization for stability derivatives

« Optimization under uncertainty
— Uncertainty quantification
 Method of moments (Mean of inputs = input of means)
* Inexpensive Monte-Carlo (using quadratic extrapolation)



Forward-Reverse Hessian
Construction 0°L

~ oD,oD,
* Hessian for N inputs is a NxN matrix
« Complete Hessian matrix can be computed with:
— One tangent/forward problem for each input
— One adjoint problem

— Inner products involving local second derivatives
computed with automatic differentiation

* Overall cost is N+1 solves for NxXN Hessian
matrix
— Lower than double finite-difference: O(N?)
— All N+1 sensitivity runs may be performed in parallel



Hessian Implementation

6000 |- First Diagonal Entry
---------- Corresponding Adjoint
Second Diagonal Entry
---------- Corresponding Adjoint
Off-diagonal Entry
500 p N e Corresponding Adjoint
4000 |-

Value of Matrix Entry
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* Implemented for steady and unsteady 2D airfoil problems

« Validated against double finite difference for Hicks-Henne bump
function design variables



Newton Optimization with Hessian
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LBFGS is “best” gradient-based optimizer

— Constructs approximate Hessian based on previous design iterations
KNITRO is Newton optimizer

— Requires Hessian as input
Superior performance in terms of number of function calls

— Added cost of Hessian recovered (2 to 6 design variables)
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Newton Optimization with Hessian
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High Order Methods

Higher order methods such as Discontinuous
Galerkin best suited to meet high accuracy
reguirements

— Asymptotic properties

HOMSs reduce grid generation requirements
HOMSs reduce grid handling infrastructure

— Dynamic load balancing

Compact data representation (data compression)

— Smaller number of modal coefficients versus large
number of point-wise values

HOMs scale very well on massively parallel
architectures using h-p multigrid solver



4-Element Airfoil (Euler Solution)
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4-Element Airfoil (Euler Solution)
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4-Element Airfoil (Euler Solution)

P=2
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4-Element Airfoil (Euler Solution)

P=3
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Parallel Performance of High-Order
DG Methods

2.5M point mesh R

250 B0 750 1090 1250 1500 1750 2004
Number of CPUs

p=0 does not scale
p=1 scales up to 1000 proc.
p>1 ideal scalability



Seqguential Bottlenecks
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« Severe consequences of Amdahl’'s law at exascale
« HOMSs reduce grid related bottlenecks

« Multidisciplinary software is complex and must be designed
to avoid any sequential portions

“MDO codes will never scale past 128 cpus” (1992)



HELIOS Multidisciplinary Rotorcraft
Simulation Software

Generic patch force
Nz on CFD surface grid Sectional airloads needed at
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Underlying CSD beam
RCAS model
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Generic patch force
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Software Complexity for
Heterogeneous Architectures (GPUs)

» Overlapping mesh

» Overlap/Interpolation

patterns recomputed
at each time step

» CFD performed on

GPU
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GPU vs CPU Performance(3D)

(0.93 million points — moving sphere)

(Chandar, Sitaraman and Mavriplis, 2012)
CPU

Overall speedup :
*9x faster for the solver

'\ *100x faster for overset assembly
* overall 10x faster

94%

CFD
solver
CFD
GPU solver
100%
preprocessing Domain
connectivity
<1%
Total about 5% time A

Negligible time
for overset grid
assembly

(0.2%)



Masking Heterogeneity with C++

Expression Templates

Flow solver implemented in C++ using
expression templates
»Low level CUDA code written at
template level
»Select CPU or GPU version at
compile time
»Same source code CPU or GPU
capable (or both simultaneously)

4z L —%— GPUs alone
| ——

Speedup over Single CPU Core

nGPU + nCPU cores =8

[}
_d¢ | Agditional 50% speedup using available cpu cores

" Number of GPUs

» Additional speedup using all available cores
»Hedge against future architecture trends

»Not applicable to legacy codes !!

> Afraid to commit to O(10°) line code to highly custom hardware

37



Software Complexity for HPC

“MPI will suffice for a few stunts. ot

B

- MPI + OpenMP per socket isnT much better” ——

|“God forbid, but is CUDA the model for the future...” CRE

e Challenge: Hardware is hierarchical, but MPIl, OpenMP and UPC are “flat”
e Algorithm design must adapt

¢ Traditionally HPC hardware comes first, algorithms never catch up.
* 1st applications on new hardware are generally parametric studies
¢ Good development environment and efficient codes at about 3-4 yrs
¢ Software cycle (10-15yrs) is longer than hardware cycle (~4 yrs)

* |Immediate need for research into algorithms that respect hierarchical nature
of foreseeable hardware

‘Bad News:

Even after 20 years, welre still not done porting codes to parallel systems”




Conclusions

« Exascale will enable
revolutionary capabilities in

aerospace analysis, design, e
understanding, capabillities fA

— Decadal Survey of Civil
Aeronautics (NAE):“...an &
important benefit of advances in S
physics-based analysis tools is the &
new technology and systems
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+ multipoint- trajectories

optimization i
+ MDO
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applications Wi” be Very mission:  specification, boundary conditions flighttesting
challenging




Conclusions

« Past NASA funding Is responsible for
many of the HPC advances in use today

— ICASE in the 1990’s
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o ™
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Full Aircraft Simulation on 512 processors

. Fig. 24 Observed Speedups for 24.7 million point
of Intel Delta! Sussman, Saltz, DaS, Grid Case on 1520 Processor CRAY T3E-1200e
Gupta, Mavriplis,Ponnusamy. ICASE 1992

Mavriplis and Pirzadeh AIAA-1999-0537



Conclusions

* ICASE in the 1990’s

— High performance fortran (HPF)
— PARTI: encapsulating parallelism prior to MPI standard
— Provided access to emerging architectures

— Ardent, Stardent, Intel Hypercube, Intel Touchstone Delta,
Connection Machine

— Housed one of the first “Beowulf” clusters
* Are we meeting the challenge today ?

« At the very least, the aerospace community
should participate forcefully in national exascale
Initiatives.



Adaptive Implicit Space-Time Methods

Traditional approach to solving unsteady problems (An illustration in 1D space):
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{(a) Spatially uniform time stepping without mesh deformation (b) Spatially uniform time stepping with spatial mesh deformation

{E}R(Uﬂ':x)
Linearize and solve |~ gur
using Newton

R (U™, U1 x" x" 1) =0 iterations:

Define residual operator R at each

} SU* = —R(U* x)
time-step:

U = Uk + 8UF
SUF — 0. UM ="



Spatially Non-Uniform Time-Stepping

The space-time slab-based unsteady solution process (An illustration in 1D space):
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(b) Spatially nonuniform time stepping with spatial mesh deformation

Define residual operator R over whole slab and solve for all U within slab
(which are unknown) in one-shot using Newton iterations.



Results

Isentropic Vortex Convection

Vortex seeded at [3.5,3.5] -> allowed to convect with free-stream
Prescribed mesh deformation through whole domain -> no mesh solution required
Time domain from [0,15]
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Case Description

Local error indicator used for adapting time-step for each element:

[ dU } [ dU }
dt | ppra dt | gpr

Strictly true for static meshes. Used here as an approximation.

€local =

2

Starting solution for non-uniform case -> 15 slabs -> thickness 1 each.
*Starts with each spatial element in each slab taking 2 time-steps of 0.5.
*Uniform case starts with 30 time-steps of 0.5 for all spatial elements.
*Uniform case doubles number of time-steps at each adaptation cycle.
*Non-uniform case adapts based on local-error indicator.

*Comparisons made against reference solution with 30,720 time-steps.



Local Error Animation
(final adaptation)
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Sub-Steps Animation
(final adaptation)
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Density Comparison

Centerline density comparison at top of each slab against uniform case
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