
Exascale Opportunities for 

Computational Aerodynamics 

Dimitri Mavriplis 

University of Wyoming 



Petaflops Opportunities for the 

NASA Fundamental Aeronautics 

Program 

Dimitri Mavriplis (University of Wyoming) 

David Darmofal (MIT) 

David Keyes (Columbia University) 

Mark Turner (University of Cincinnati) 

 

AIAA 2007-4048 



Overview   (AIAA-2007-4048) 

• Two principal intertwined themes 

– 1:  NASA simulation capability risks becoming commoditized 

• Rapid advance of parallelism (> 1M cores) 

• Fundamental improvements in algorithms and development tools not 

keeping pace 

• Hardware and software complexity outstripping our ability to simulate 

(J. Alonso) 

• Clear vision of enabling possibilities is required 

– What would you do with 1000 times more computational power ? 

– 2: HPC Resurgent at National Level : Competitiveness 

• Aerospace industry is at the heart of national competitiveness 

• NASA is at the heart of aerospace industry 

• Aeronautics seldom mentioned in national HPC reports 



ARMD’s Historic HPC Leadership   
(Code R) 

• ILLIAC IV (1976) 

• National Aerodynamic Simulator (1980’s) 

• 1992 HPCCP Budget:  
– $596M (Total) 

• $93M Department of Energy (DOE) 

• $71M NASA 
– Earth and Space Sciences (ESS) 

– Computational Aerosciences (CAS) 

 

 

• Computational Aerosciences (CAS) Objectives (1992):  
– “…integrated, multi-disciplinary simulations and design 

optimization of aerospace vehicles throughout their mission 
profiles” 

– “… develop algorithm and architectural testbeds … scalable to 
sustained teraflops performance” 



Algorithm Development 

Opportunities 
• Modest investment in cross-cutting algorithmic work 

would complement mission driven work and ensure 
continual long-term progress     (including NASA expertise for 
determining successful future technologies) 

 

– Scalable non-linear solvers 

– Higher-order and adaptive methods for unstructured meshes 

– Optimization (especially for unsteady problems) 

– Reduced-order modeling 

– Uncertainty quantification 

– Geometry management 

 

• Current simulation capabilities (NASA/DOE/others) rests on 
algorithmic developments, many funded by NASA 

 

• Revolutionary Computational Aerosciences Program 



From Petascale to Exascale 

• Petascale is here 

– National HPC centers > 1Pflop 

 

• Exascale is coming 

– Up to 1B threads 

– Deep memory hiearchies 

– Heterogeneous architectures 

– Power considerations dominant 

– Petascale at the mid-range 
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– National HPC centers > 1Pflop 

 

• Exascale is coming 

– Up to 1B threads 

– Deep memory hiearchies 

– Heterogeneous architectures 

– Power considerations dominant 

– Petascale at the mid-range 
• Terascale on your phone ? 



Getting to Exascale 

• Strong scaling of current simulations 

– Running same problem faster 

– Highly unlikely 

• Weak scaling of current simulations 

– Increasing problem size with hardware capability 

• eg Climate simulation: Insatiable resolution 

requirements 

– Algorithmic consequences 

• Implicit time stepping will be required to maintain 

suitable real time climate simulation rates  

– 5 years of simulation per wall clock day 



Aeronautics/Aerospace HPC 

• Aerospace is engineering based discipline 

• HPC advocacy has increasingly been taken up by 

the science community 

– Numerical simulation is now the third pillar of scientific 

discovery on an equal footing alongside theory and 

experiment 

– Increased investment in HPC will enable new scientific 

discoveries 

• Engineering is not discovery based 

– Arguable more difficult to reach exascale 

• e.g Gradient-based optimization is inherently sequential 

 



• From: DARPA/IPTO/AFRL Exascale Computing Study (2008)  
       http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm 



• From: DARPA/IPTO/AFRL Exascale Computing Study (2008)  
       http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm 



Reaching Aeronautics Exascale 

• Weak Scaling 
– Still only beginning to understand 

resolution requirements 

– Need dramatically more spatial 
resolution to increase fidelity 

– Most high-fidelity simulations have 
many time scales 

– Learning more about true resolution 
requirements as formal error 
estimation becomes part of CFD 
process 

– Towards LES/DNS of full aircraft or 
propulsion systems 

• Estimates by Spalart et al. (1997) 
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Aeronautics Exascale 

• Many problems do not require 
ever-increasing spatial 
resolution 

• 10M or 100M grid points “good 
enough” for engineering 
decisions 

• Long time integration of stiff 
implicit systems makes for 
expensive simulations 

• Gradient-based optimization is 
sequential in nature and 
becomes expensive 
(especially time-dependent 
optimization) 

Base Optimized 

Airfoil optimization for dynamic stall             
(Mani and Mavriplis 2012) 

Overflow/RCAS CH-47 simulation  
(Dimanlig/Bhagwat – AFDD, Boeing, ART) 

 



Aeronautics Exascale 

• Problems with limited opportunities for 
spatial parallelism will need to seek other 
avenues for concurrency 

– Parameter space 
• Embarrassingly parallel 

– Time parallelism 
• Time spectral 

• Space-time methods 

– Alternate optimization approaches 
• Hessian construction for Newton Optimization 



Time-Spectral Formulation 

 

 Discrete Fourier and Fourier inverse transform 
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 Time Derivative 



Time Spectral Formulation 
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 Discrete equations 

 

 Time-spectral method may be implemented without 

any modifications to an existing spatial discretization, 

requiring only the addition of the temporal 

discretization coupling term 

 All N time instances coupled and solved 

simultaneously 

 Extensions possible for quasi-periodic problems 



CFD Lab   
University of Wyoming 

Formulation 
• Parallel Implementation 

 Parallelism in time and space. 

Two types of inter-processor 

communication: communication 

between spatial partitions and 

communication between all of the 

time instances 

 For multicore and/or 

multiprocessor hardware nodes 

within a distributed memory 

parallel machine, the optimal 

strategy consists of placing all 

time instances of a particular 

spatial partition on the same node 



Parallel Time Spectral Simulation 

• BDF2:  50 multigrid cycles per time step, 360 time steps per revolution, 6 revolutions 

 8 processes, 8 spatial partitions:  24.1137 X 50 X 360 X 6 = 2,604,028 s  

 

• BDFTS:  N = 7, 300 multigrid cycles per revolution, 6 revolutions 

 56 processes, 8 spatial partitions:  31.167 X 300 X 6 = 56,101.3 s 

  

• BDFTS:  N = 9, 300 multigrid cycles per revolution, 6 revolutions 

 72 processes, 8 spatial partitions:  32.935 X 300 X 6 = 59,282.5 s  



Time Spectral Scalability 

• Coarse 500,000 pt mesh with limited spatial parallelism 

• N=5 time spectral simulation employs 5 times more cores 



Second-Order Sensitivity Methods 

• Adjoint is efficient approach for calculating first-
order sensitivities (first derivatives) 

• Second-order (Hessian) information can be 
useful for enhanced capabilities: 
– Optimization 

• Hessian corresponds to Jacobian of optimization problem 
(Newton optimization) 

– Unsteady optimization seems to be hard to converge 

• Optimization for stability derivatives 

• Optimization under uncertainty  

– Uncertainty quantification 
• Method of moments (Mean of inputs = input of means) 

• Inexpensive Monte-Carlo (using quadratic extrapolation) 

 



Forward-Reverse Hessian 

Construction 

• Hessian for N inputs is a NxN matrix 

• Complete Hessian matrix can be computed with: 
– One tangent/forward problem for each input 

– One adjoint problem 

– Inner products involving local second derivatives 
computed with automatic differentiation 

• Overall cost is N+1 solves for NxN Hessian 
matrix 
– Lower than double finite-difference: O(N2) 

– All N+1 sensitivity runs may be performed in parallel 

ji DD

L2



Hessian Implementation 

• Implemented for steady and unsteady 2D airfoil problems 

• Validated against double finite difference for Hicks-Henne bump 
function design variables 



Newton Optimization with Hessian 

• LBFGS is “best” gradient-based optimizer 
– Constructs approximate Hessian based on previous design iterations 

• KNITRO is Newton optimizer 
– Requires Hessian as input 

• Superior performance in terms of number of function calls 
– Added cost of Hessian recovered (2 to 6 design variables) 
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High Order Methods 

• Higher order methods such as Discontinuous 
Galerkin best suited to meet high accuracy 
requirements 
– Asymptotic properties 

• HOMs reduce grid generation requirements 

• HOMs reduce grid handling infrastructure 
– Dynamic load balancing 

• Compact data representation (data compression) 
– Smaller number of modal coefficients versus large 

number of point-wise values 

 

• HOMs scale very well on massively parallel 
architectures using h-p multigrid solver 



4-Element Airfoil (Euler Solution) 
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4-Element Airfoil (Euler Solution) 



4-Element Airfoil (Euler Solution) 



Parallel Performance of High-Order 

DG Methods 

2.5M point mesh 

• p=0 does not scale 

• p=1 scales up to 1000 proc. 

• p>1 ideal scalability  



Sequential Bottlenecks 

• Severe consequences of Amdahl’s law at exascale 

• HOMs reduce grid related bottlenecks 

• Multidisciplinary software is complex and must be designed 
to avoid any sequential portions 

 
“MDO codes will never scale past 128 cpus” (1992) 

          

 



HELIOS Multidisciplinary Rotorcraft 

Simulation Software 



HELIOS Multidisciplinary Software 

20 wing twist 
 

 

Object Oriented Python Integration Framework 

Distributed Memory processors communicating via MPI 

P0 P1 P2 PN 

FSI 

Fluid-Structure Interface 

Software 

Integration 

Framework 

(SIF) 

DCF 

Domain Connectivity  

NBE 

Near-Body CFD 

shared data 

Component 

Interfaces 

MDM 

Mesh Deform 

6DOF 

Mesh Motion 

OBE 

Off-Body CFD 

CSD 

Struct Dynamics 

NSU3D:  

Univ. of Wyoming 

SAMARC:  

LLNL and NASA-Ames 

RCAS:  

AFDD and ART 

Rotor-FSI:  

HI-ARMS 

PUNDIT:  

HI-ARMS 
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Software Complexity for 
Heterogeneous Architectures (GPUs) 

 Overlapping mesh  

 Overlap/Interpolation 

patterns recomputed 

at each time step 

 CFD performed on 

GPU 

 Mesh assembly 

performed on GPU 
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GPU vs CPU Performance(3D) 
(0.93 million points – moving sphere) 

(Chandar, Sitaraman and Mavriplis, 2012) 
CPU 

CFD 
solver 

Domain 
connectivity 

preprocessing 

GPU 
CFD 
solver 

Total about 5% time 

Negligible time 

for overset grid 

assembly  

(0.2%) 

Overall speedup : 
•9x faster for the solver 
•100x faster for  overset  assembly 
• overall 10x faster 
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Masking Heterogeneity with C++ 
Expression Templates 

Additional speedup using all available cores 

Hedge against future architecture trends 

Not applicable to legacy codes !! 

Afraid to commit to O(106) line code to highly custom hardware 

Flow solver implemented in C++ using 

expression templates 

Low level CUDA code written at 

template level 

Select CPU or GPU version at 

compile time 

Same source code CPU or GPU 

capable (or both simultaneously) 



Software Complexity for HPC 

 



Conclusions 

• Exascale will enable 
revolutionary capabilities in 
aerospace analysis, design, 
understanding, capabilities 
– Decadal Survey of Civil 

Aeronautics (NAE):“…an 
important benefit of advances in 
physics-based analysis tools is the 
new technology and systems 
frontiers they open” 

 

• Achieving exascale for 
aeronautical /aerospace 
applications will be very 
challenging 



Conclusions 

• Past NASA funding is responsible for 

many of the HPC advances in use today 

– ICASE in the 1990’s 

Mavriplis and Pirzadeh AIAA-1999-0537 

Full Aircraft Simulation on 512 processors 

of Intel Delta; Sussman, Saltz, Das, 

Gupta, Mavriplis,Ponnusamy. ICASE 1992 



Conclusions 

• ICASE in the 1990’s 
– High performance fortran (HPF) 

– PARTI: encapsulating parallelism prior to MPI standard 

– Provided access to emerging architectures 

– Ardent, Stardent, Intel Hypercube, Intel Touchstone Delta, 
Connection Machine 

– Housed one of the first “Beowulf” clusters 

• Are we meeting the challenge today ? 

• At the very least, the aerospace community 
should participate forcefully in national exascale 
initiatives. 



Adaptive Implicit Space-Time Methods 

Traditional approach to solving unsteady problems (An illustration in 1D space): 

Define residual operator R at each 
time-step: 

Linearize and solve 
using Newton 
iterations: 



Spatially Non-Uniform Time-Stepping 

The space-time slab-based unsteady solution process (An illustration in 1D space):  

Define residual operator R over whole slab and solve for all U within slab 
(which are unknown) in one-shot using Newton iterations. 



Results 
Isentropic Vortex Convection 

Vortex seeded at [3.5,3.5] -> allowed to convect with free-stream 
Prescribed mesh deformation through whole domain -> no mesh solution required 

Time domain from [0,15] 



Case Description 
Local error indicator used for adapting time-step for each element: 

Strictly true for static meshes. Used here as an approximation. 

•Starting solution for non-uniform case -> 15 slabs -> thickness 1 each. 
•Starts with each spatial element in each slab taking 2 time-steps of 0.5. 
•Uniform case starts with 30 time-steps of 0.5 for all spatial elements. 
•Uniform case doubles number of time-steps at each adaptation cycle. 
•Non-uniform case adapts based on local-error indicator. 
•Comparisons made against reference solution with 30,720 time-steps. 



Local Error Animation 
(final adaptation) 



Sub-Steps Animation 
(final adaptation) 



Density Comparison 

Centerline density comparison at top of each slab against uniform case 


