
Software Tools for Parallel

Coupled Simulations

Alan Sussman

Department of Computer Science &
Institute for Advanced Computer Studies

http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/ic/

Ancient History

Block structured CFD applications

 Multi-block (Irregularly Coupled Regular

Meshes)

 Multigrid

TLNS3D CFD application

 Vatsa et. al at NASA Langley

How to parallelize effectively, on

distributed memory parallel machine?

Multiblock Grid

Solution: Multiblock Parti

Capabilities:

 Runtime data distributions

 Distribute individual block over parts of

processor space

 Fill in overlap/ghost cells, for partitioned blocks

 Regular section moves for communication

across blocks

 Enables reuse of communication schedules

Multiblock Parti

Shown to provide excellent performance,
and scaled to large machine configurations
(at the time)

Other libraries with similar functionality:
 KeLP (UCSD, Baden)

 Global Arrays (DOE PNNL)
 still supported and widely used

Multiblock Parti used in LLNL P++ array
class library
 for AMR and other distributed array codes

InterComm

A Simple Example (MxN coupling)

p1

p2

p3

p4

p1

p2

M=4 processors N=2 processors

InterComm: Data exchange at the borders (transfer and control)

Visualization station

Parallel Application LEFTSIDE

(Fortran90, MPI-based)

Parallel Application RIGHTSIDE

(C++, PVM-based)

2-D Wave Equation

Coupling Parallel Programs via InterComm

Introduction
 Problem Definition (the MxN problem)

 InterComm in a nutshell

Design Goals
 Data Transfer Infrastructure

 Control Infrastructure

 Deploying on available computational resources

Current Status

The Problem

Coupling codes, not models

Codes written in different languages

 Fortran (77, 95), C, C++/P++, …

Both parallel (shared or distributed memory)

and sequential

Codes may be run on same, or different

resources

 One or more parallel machines or clusters (the

Grid)

Space Weather Prediction

Major driving

application:
Production of an ever-

improving series of

comprehensive scientific

models of the Solar

Terrestrial environment

Codes model both large

scale and microscale

structures and dynamics

of the Sun-Earth system

What is InterComm?

A programming environment and

runtime library

 For performing efficient, direct data

transfers between data structures (multi-

dimensional arrays) in different

programs/components

 For controlling when data transfers occur

 For deploying multiple coupled programs in

a Grid environment – won’t talk about this

Data Transfers in InterComm

Interact with data parallel (SPMD) code used in

separate programs (including MPI)

Exchange data between separate (sequential or

parallel) programs, running on different

resources (parallel machines or clusters)

Some people refer to this as the MxN problem

InterComm Goals

One main goal is minimal modification to
existing programs
 In scientific computing: plenty of legacy code

 Computational scientists want to solve their
problem, not worry about plumbing

Other main goal is low overhead and efficient
data transfers
 Low overhead in planning the data transfers

 Efficient data transfers via customized all-to-all
message passing between source and destination
processes

Coupling OUTSIDE components

Separate coupling information from the
participating components
 Maintainability – Components can be

developed/upgraded individually

 Flexibility – Change participants/components easily

 Functionality – Support variable-sized time interval
numerical algorithms or visualizations

Matching information is specified separately by
application integrator

Runtime match via simulation time stamps

Controlling Data Transfers

A flexible method for specifying when
data should be moved
 Based on matching export and import calls

in different programs via timestamps

 Transfer decisions take place based on a
separate coordination specification
 Coordination specification can also be used to

deploy model codes and grid/mesh
translation/interpolation routines

 specify what codes to run and where to run
them)

 called an XML job description (XJD) file

Example

Simulation exports every time step,

visualization imports every 2nd time step

Visualization station

Simulation Cluster

Issues in Coupling Codes

To enable a program to be
coupled to others, we need to:
 Describe data distribution across

processes in each parallel program
 Build a data descriptor

 Describe data to be moved
(imported or exported)
 Build set of regions

 Build a communication schedule
 What data needs to go where

 Move the data
 Transmit the data to proper locations Generalized Block

P1 P2 P3

P4 P5 P6

P7 P9 P8

1

N

1 N

P4

P7

P5 P6

P8 P9

P2

N/3 2N/3

N/3

2N/3

Regular Block

P3

1

N

1 N

P1

Plumbing

Bindings for C, C++/P++, Fortran77,
Fortran95

External message passing and program
interconnection via MPI or PVM

Each model/program can do whatever it
wants internally (MPI, OpenMP,
pthreads, sockets, …) – and start up by
whatever mechanism it wants (in XJD
file)

Current status

http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAr
eas/ic/

First InterComm 2.0 release in 2009
 Dynamic timestamp matching supported

 requires pthreads support from OS

 Supported on Linux clusters, NCAR bluefire (IBM
Power7, with LSF scheduler), Cray XT, other high-
end machines

Integrated with ESMF (Earth System Modeling
Framework)
 wrap ESMF objects for communication via

InterComm

 Part of ESMF code contributed code base

http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/ic/
http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/ic/

END OF TALK

Corona and solar wind

Global magnetospheric MHD

Thermosphere-

ionosphere model

Rice convection model

Particle and Hybrid model

Data Transfer

It all starts with the Data Descriptor

 Information about how the data in each program is distributed
across the processes

 Usually supplied by the program developer

Compact or Non-Compact descriptors
 Regular Blocks: collection of offsets and sizes (one per block)

 Irregular Distributions: enumeration of elements (one per
element)

Performance issue is that different algorithms
perform best for different combinations of
source/destination descriptors and local vs.
wide area network connections

Separate codes from matching

define region Sr12

define region Sr4

define region Sr5

...

Do t = 1, N, Step0

 ... // computation

 export(Sr12,t)

 export(Sr4,t)

 export(Sr5,t)

EndDo

define region Sr0

...

Do t = 1, M, Step1

 import(Sr0,t)

 ... // computation

EndDo

Importer Ap1

Exporter Ap0

Ap1.Sr0

Ap2.Sr0

Ap4.Sr0

Ap0.Sr12

Ap0.Sr4

Ap0.Sr5

Configuration file #

Ap0 cluster0 /bin/Ap0 2 ...

Ap1 cluster1 /bin/Ap1 4 ...

Ap2 cluster2 /bin/Ap2 16 ...

Ap4 cluster4 /bin/Ap4 4

Ap0.Sr12 Ap1.Sr0 REGL 0.05

Ap0.Sr12 Ap2.Sr0 REGU 0.1

Ap0.Sr4 Ap4.Sr0 REG 1.0

Approximate Matching

Exporter Ap0 produces a sequence of
data object A at simulation times 1.1,
1.2, 1.5, and 1.9

 A@1.1, A@1.2, A@1.5, A@1.9

Importer Ap1 requests the same data
object A at time 1.3

 A@1.3

Is there a match for A@1.3? If Yes,
which one and why?

Controlling Data Transfers

Import and Export operations are
time-stamped (Ti and Te)

Issues in designing Decision
Functions
 Matching Policy

 Does the import timestamp match any
of the exported timestamps, subject
to a particular policy?

 Precision

 Which of the exported data most
closely matches what is requested to
be imported?

Decision functions directly affect
InterComm buffering decisions

Exporter
(have)

Importer
(need)

ti
m

el
in

e

Te=0.10 ms

Te=0.30 ms

Te=0.50 ms

Te=0.70 ms

Te=0.90 ms

Te=1.10 ms

Ti=0.29 ms

Ti=0.51 ms

Ti=0.85 ms

Deploying Components

Infrastructure for deploying programs
and managing interactions between
them

 Starting each of the models on the
desired Grid resources

 Connecting the models together via the
InterComm framework

 Models communicate via the import and
export calls

Motivation

Developer has to deal with …

 Multiple logons

 Manual resource discovery and allocation

 Application run-time requirements

Process for launching complex

applications with multiple components is

 Repetitive

 Time-consuming

 Error-prone

Deploying Components

A single environment for running coupled applications
in the high performance, distributed, heterogeneous
Grid environment

We must provide:
 Resource discovery: Find resources that can run the job,

and automate how model code finds the other model codes
that it should be coupled to

 Resource Allocation: Schedule the jobs to run on the
resources – without you dealing with each one directly

 Application Execution: start every component appropriately
and monitor their execution

Built on top of basic Web and Grid services (XML,
SOAP, Globus, PBS, Loadleveler, LSF, etc.)

What else is out there?

CCA MxN Working Group

Parallel Application Work Space (PAWS) [Beckman et al., 1998]

Collaborative User Migration, User Library for
Visualization and Steering (CUMULVS) [Geist et al., 1997]

Model Coupling Toolkit (MCT) [Larson et al., 2001]

Earth System Modeling Framework (ESMF)

Space Weather Modeling Framework (SWMF)

Roccom [Jiao et al., 2003]

Overture [Brown et al., 1997]

Cactus [Allen et al., 1999]

Summary and Ongoing Work

InterComm: a comprehensive high-
performance framework for coupling
parallel scientific codes

Plumbing for high performance data
transfers is fully functional and released,
deployment services released, control
functions released

Continuing to working with our customer
base to modify their codes and couple
their models

