
A Different Kind of Flow Analysis

David M Nicol

University of Illinois at Urbana-Champaign

2

What Am I Doing Here???

Invite for “ICASE Reunion”

Did research on “Peformance Analysis
Supporting Supercomputing”

• many problems supporting HPC CFD

TODAY’S TALK

• Simulation, modeling flows, HPC,

3

What Am I Doing Here???

Invite for “ICASE Reunion”

Did research on “Peformance Analysis
Supporting Supercomputing”

• many problems supporting HPC CFD

TODAY’S TALK

• Simulation, modeling flows, HPC,

And Now For Something Completely Different..

4

Motivation
Large-scale network simulations with

– “background” traffic where details aren’t needed

– Congestion affecting results

– traffic where principal interest is delivered volume

• e.g. worm scans, flooding attack

– Our specific motivation is for cyber-defense training (RINSE)

Possible solution : simulate such traffic as “flows” at a coarse time-scale
– Inject flow rates at edge of network

– Compute delivered volume for each flow

– Compute link utilization throughout network

Challenges:
– Capture interactions between flows, routing infrastructure, fine scale traffic

Big Picture

Define time-step larger than end-to-end
latency (e.g. 1 sec)

Each time-step

• Define (src,dest,rate) triples

– At all network ingress points

– Rate can depend on feedback

• “Push” flows through network

– fine time-scale traffic viewed in
aggregate with its own (historical) flow
rates

– routing based on forwarding tables

– loss at router ports where aggregate
input rate exceeds port bandwidth

– record bandwidth consumption

AT&T

AboveNet

Exodus

Cable&Wireless

Level3

Verio

Sprint

UUNet

Modeling Congestion

Even though flows are acyclic,
dependency cycles may form in
definition of flow rates

congestion

li
* =

li

r ´ li /L

ì
í
î

when

L £ r

otherwise

= li ´min 1,r /L{ }

L = l1 + + lnDefine

l1

l2

l3

l1 + l2 + l3 > r

in

l*
1

l2

*

l3

*

out

l1

l2

l3

l1 + l2 + l3 £ r

in

r

r

r

l1

l2

l3

l1

*

l3

*

l2

*

l1

*

l3

*
depends on

l1

*
depends on

l2

*

l3

*
depends on

l2

*

No congestion

out

Resolution and Transparency
All of a port’s final output flows can be resolved once all of its input flow values are

resolved
But to break cycles we need to be smarter….

A port is transparent if the sum of input rate bounds is no greater than the output

bandwidth

r

r

r

l1

l2

l3

l1

*

l3

*

l2

*

Example : Suppose

l1 + l3 £ r

£ l1

£ l2

£ l3

Then
1.

l1 + l3

* £ r so that

l1

* = l1

Port becomes transparent

Try to resolve final output flow values based on upper bounds

Notice that every output flow is bounded from above by input flow rate …. Every
flow can be bounded by its ingress rate

Flow rate becomes resolved

2. Port becomes resolved

Port becomes resolved

3. Flows become resolved

4. Repeat

Dependency Reduction

Formalization

Flow states are {settled, bounded}

Port states are {resolved, transparent, unresolved}

A port’s state may change, depending on input flows

An output flow state may settle, when the port state
becomes resolved or transparent

Iterate: {

1. Select port or flow whose state may change

2. Process state/value change

3. Identify ports/flows affected by the change

}

State Change Rules

Port states are {resolved, transparent, unresolved}

Flow states are {settled, bounded}

Rule 1: port resolution

Pre-condition Action

Port state is not resolved and all
input flow states are settled

Mark port state as resolved,
compute all output flow values,
mark each as settled

State Change Rules

Port states are {resolved, transparent, unresolved}

Flow states are {settled, bounded}

Rule 2: port transparency

Pre-condition Action

Port state is unresolved and sum of
input rate bounds is less than
bandwidth,

Mark port state as transparent.
For every input rate that is settled,
mark corresponding output rate as
settled

L £ r

L £ r

State Change Rules

Port states are {resolved, transparent, unresolved}

Flow states are {settled, bounded}

Rule 3: settle state transition

Pre-condition Action

Port state is transparent, some
input flow is settled, and
corresponding output flow is not

Mark corresponding output flow as
settled, with value equal to input
flow value

State Change Rules

Port states are {resolved, transparent, unresolved}

Flow states are {settled, bounded}

Rule 4: flow bound transition #1

Pre-condition Action

Port state is unresolved, the fair
proportion relative to settled flows
of an input flow rate exceeds
bound on output flow

Lower corresponding output flow
bound to be equal to fair
proportion of input flow bound

lin

lout

r ´ (lin /f) < lout

lin

lout = r ´ (lin /f)

f is sum of settled flow rates

State Change Rules

Port states are {resolved, transparent, unresolved}

Flow states are {settled, bounded}

Rule 5: flow bound transition #2

Pre-condition Action

Port state is not resolved, the flow
rate bound of an input flow is less
than the corresponding output
flow bound

Set bound of output flow equal to
bound on input rate

lin

lout

lin

lout = lin

lin < lout

Cycle Resolution

After all that, we may still be left with cycles of unresolved ports

General problem is solution of a system of non-linear equations

– Solution methods generally iterative

• The number of iterations, and cost of iterations is principle
issue

– We explore “fixed-point” iteration.

Each iteration :

– freeze all input rates

– compute output rates based on frozen input rates

– compare new solutions with old for convergence

• Our experiments define convergence when the relative
difference between successive flow value solutions is less than
(1/10)% for all flow values

Experiments
Topologies obtained from Rocketfuel database of

observed Internet topologies

Traffic loads derived from Poisson-Pareto Burst

Processes

We ask

– How many cycles form, as a function of load?
– How many iterations needed to converge, as a

function of load?
– How fast does it run?
– What is speedup relative to pure packet

simulation?
– What is the accuracy?

Results
Convergence behavior

– Examine # ports in cycle and iterations for convergence
– Vary topology
– 50% average link utilization

Topology #routers #links #flows Mbps

Top-1 27 88 702 100

Top-2 244 1080 12200 2488

Top-3 610 3012 61000 2488

Top-4 1126 6238 168900 2488

Topology median #ports in cycles #median iterations
 Top-2 20 5
 Top-3 40 9
 Top-4 125 11

Dependency reduction is effective
Fixed point algorithm converges quickly

Results
We ask

– How fast does it run?
– What is speedup relative to pure packet simulation?
– What is the accuracy relative to packet simulation?

Topology #routers #links #flows Mbps

Top-1 27 88 702 100

Top-2 244 1080 12200 2488

Top-3 610 3012 61000 2488

Top-4 1126 6238 168900 2488

Topology secs/time-step secs/time-step
 (20% link util.) (50% link util.)
Top-1 0.0026 0.0026
Top-2 0.051 0.051
Top-3 0.283 0.285
Top-4 0.852 0.907

For 1 sec time-step, faster than real-
time on a model equivalent to 1.9G
pkt-evts/sec (1K bytes/pkt)

Experiments run on PC
• 1.5 GHz CPU
• 3Gb memory
• Linux OS

Topologies

Results

0.285
0.907

Results
We ask

– How fast does it run?
– What is speedup relative to pure packet simulation?
– What is the accuracy relative to packet simulation?

Topology #routers #links #flows Mbps

Top-1 27 88 702 100

Top-2 244 1080 12200 2488

Top-3 610 3012 61000 2488

Top-4 1126 6238 168900 2488

Experiments run on PC
• 1.5 GHz CPU
• 3Gb memory
• Linux OS

Topologies

Results

Link util. speedup Link util. speedup

 10% 213 50% 3436
 20% 1665 60% 3725
 30% 2112 70% 1023
 40% 2728 80% 1135

Directly compare packet-oriented
simulation, using exactly same input
flow rates, on Top-1

speedup over wide range of loads

Results
We ask

– How fast does it run?
– What is speedup relative to pure packet simulation?
– What is the accuracy relative to packet simulation?

Experiments gather statistics of foreground UDP and TCP flows, comparing
equivalent packet and fluid based background flows

UDP foreground traffic is largely insensitive to difference in background flows

TCP foreground traffic is insensitive to difference in background flows when
link utilization is either low, or high. Significant variability observed in middle
region

Accuracy is sufficient for real-time training exercises that motivate this work

Results
We ask

– How fast does it run?
– What is speedup relative to pure packet simulation?
– What is the accuracy relative to packet simulation?

Phase I : dependency reduction
Phase II: reduced graph generation
Phase III: cycle mapping/
 fixed point iteration

Experiment : run on 3.2GHz Xeon cluster, 1,2,4,8,16,32 processors
flows = 118,828 x # procs

Results

Phase III delay grows due to
irregular load

32 processor problem finishes in
2.3 x the 1 processor problem

Conclusions

• Coarse scale simulation of network flows is a
necessary component of large-scale network
simulation

– We’ve shown how to do it efficiently

• Faster than real-time on large problems

• Accurate enough for the training context for which it
was designed

– Parallelization is a different talk…

