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What Am I Doing Here??? 

Invite for “ICASE Reunion” 
 

Did research on “Peformance Analysis 
Supporting Supercomputing” 

•  many problems supporting HPC CFD 

 

TODAY’S TALK 

• Simulation, modeling flows, HPC, 
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What Am I Doing Here??? 

Invite for “ICASE Reunion” 
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And Now For Something Completely Different.. 
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Motivation 
Large-scale network simulations with 

– “background” traffic where details aren’t needed 

– Congestion affecting results 

–  traffic where principal interest is delivered volume 

• e.g. worm scans, flooding attack 

– Our specific motivation is for cyber-defense training (RINSE) 

 

 

Possible solution : simulate such traffic as “flows” at a coarse time-scale 
– Inject flow rates at edge of network 

– Compute delivered volume for each flow 

– Compute link utilization throughout network 

 

Challenges: 
– Capture interactions between flows, routing infrastructure, fine scale traffic 



Big Picture 
 

Define time-step larger than end-to-end 
latency (e.g. 1 sec) 

Each time-step 

• Define (src,dest,rate) triples 

– At all network ingress points 

– Rate can depend on feedback 

• “Push” flows through network 

– fine time-scale traffic viewed in 
aggregate with its own (historical) flow 
rates 

– routing based on forwarding tables 

– loss at router ports where aggregate 
input rate exceeds port bandwidth 

– record bandwidth consumption 
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Modeling Congestion 

Even though flows are acyclic, 
dependency cycles may form in 
definition of flow rates 

congestion 
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Resolution and Transparency 
All of a port’s final output flows can be resolved once all of its input flow values are 

resolved 
But to break cycles we need to be smarter…. 

 

 

 
A port is transparent if the sum of input rate bounds is no greater than the output 

bandwidth 
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Port becomes transparent 

Try to resolve final output flow values based on upper bounds 

Notice that every output flow is bounded from above by input flow rate …. Every 
flow can be bounded by its ingress rate 

Flow rate becomes resolved 

2. Port becomes resolved 

Port becomes resolved 

3. Flows become resolved 

4. Repeat 



Dependency Reduction 

Formalization 

Flow states are {settled, bounded} 

Port states are {resolved, transparent, unresolved} 

A port’s state may change, depending on input flows 

An output flow state may settle, when the port state 
becomes resolved or transparent 

Iterate: { 

1. Select port or flow whose state may change 

2. Process state/value change 

3. Identify ports/flows affected by the change 

} 



State Change Rules 

Port states are {resolved, transparent, unresolved} 

Flow states are {settled, bounded} 

Rule 1: port resolution 

Pre-condition Action 

Port state is not resolved and all 
input flow states are settled 

Mark port state as resolved, 
compute all output flow values, 
mark each as settled 



State Change Rules 

Port states are {resolved, transparent, unresolved} 

Flow states are {settled, bounded} 

Rule 2: port transparency 

Pre-condition Action 

Port state is unresolved and sum of 
input rate bounds is less than 
bandwidth,  

Mark port state as transparent.  
For every input rate that is settled, 
mark corresponding output rate as 
settled 
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State Change Rules 

Port states are {resolved, transparent, unresolved} 

Flow states are {settled, bounded} 

Rule 3: settle state transition 

Pre-condition Action 

Port state is transparent, some 
input flow is settled, and 
corresponding output flow is not 

Mark corresponding output flow as 
settled, with value equal to input 
flow value 



State Change Rules 

Port states are {resolved, transparent, unresolved} 

Flow states are {settled, bounded} 

Rule 4: flow bound transition #1 

Pre-condition Action 

Port state is unresolved, the fair 
proportion relative to settled flows 
of an input flow rate exceeds 
bound on output flow 

Lower corresponding output flow 
bound to be equal to fair 
proportion of input flow bound 
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State Change Rules 

Port states are {resolved, transparent, unresolved} 

Flow states are {settled, bounded} 

Rule 5: flow bound transition #2 

Pre-condition Action 

Port state is not resolved, the flow 
rate bound of an input flow is less 
than the corresponding output 
flow bound 

Set bound of output flow equal to 
bound on input rate 
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Cycle Resolution 

After all that, we may still be left with cycles of unresolved ports 

General problem is solution of a system of non-linear equations 

– Solution methods generally iterative 

• The number of iterations, and cost of iterations is principle 
issue 

– We explore “fixed-point” iteration. 

Each iteration :  

– freeze all input rates 

– compute output rates based on frozen input rates 

– compare new solutions with old for convergence 

• Our experiments define convergence when the  relative 
difference between successive flow value solutions is less than 
(1/10)% for all flow values 



Experiments 
Topologies obtained from Rocketfuel database of 

observed Internet topologies 
 
Traffic loads derived from Poisson-Pareto Burst 

Processes 
 
We ask 

– How many cycles form, as a function of load? 
– How many iterations needed to converge, as a 

function of load? 
– How fast does it run? 
– What is speedup relative to pure packet 

simulation? 
– What is the accuracy? 



Results 
Convergence behavior 

– Examine # ports in cycle and iterations for convergence 
– Vary topology 
– 50% average link utilization 

Topology #routers #links #flows Mbps 

Top-1       27     88    702   100 

Top-2      244   1080  12200  2488 

Top-3      610   3012  61000  2488 

Top-4    1126   6238 168900 2488  

Topology  median #ports in cycles #median iterations 
  Top-2               20               5 
  Top-3               40                    9 
  Top-4              125                 11 

Dependency reduction is effective 
Fixed point algorithm converges quickly 



Results 
We ask 

– How fast does it run? 
– What is speedup relative to pure packet simulation? 
– What is the accuracy relative to packet simulation? 

Topology #routers #links #flows Mbps 

Top-1       27     88    702   100 

Top-2      244   1080  12200  2488 

Top-3      610   3012  61000  2488 

Top-4    1126   6238 168900 2488  

Topology secs/time-step secs/time-step 
  (20% link util.)    (50% link util.) 
Top-1       0.0026           0.0026 
Top-2          0.051            0.051 
Top-3       0.283         0.285 
Top-4       0.852            0.907 
 

For 1 sec time-step, faster than real-
time on a model equivalent to 1.9G 
pkt-evts/sec (1K bytes/pkt) 

Experiments run on PC 
• 1.5 GHz CPU 
• 3Gb memory 
• Linux OS 

Topologies 

Results 

0.285 
0.907 



Results 
We ask 

– How fast does it run? 
– What is speedup relative to pure packet simulation? 
– What is the accuracy relative to packet simulation? 

Topology #routers #links #flows Mbps 

Top-1       27     88    702   100 

Top-2      244   1080  12200  2488 

Top-3      610   3012  61000  2488 

Top-4    1126   6238 168900 2488  

Experiments run on PC 
• 1.5 GHz CPU 
• 3Gb memory 
• Linux OS 

Topologies 

Results 

Link util. speedup Link util. speedup 
 
   10%       213     50%     3436 
   20%    1665      60%      3725 
   30%       2112     70%      1023 
   40%      2728     80%     1135 
 

Directly compare packet-oriented 
simulation, using exactly same input 
flow rates, on Top-1 

speedup over wide range of loads 



Results 
We ask 

– How fast does it run? 
– What is speedup relative to pure packet simulation? 
– What is the accuracy relative to packet simulation? 

Experiments gather statistics of foreground UDP and TCP flows, comparing 
equivalent packet and fluid based background flows 

UDP foreground traffic is largely insensitive to difference in background flows 

TCP foreground traffic is insensitive to difference in background flows when 
link utilization is either low, or high.  Significant variability observed in middle 
region 

Accuracy is sufficient for real-time training exercises that motivate this work 



Results 
We ask 

– How fast does it run? 
– What is speedup relative to pure packet simulation? 
– What is the accuracy relative to packet simulation? 

Phase I :   dependency reduction 
Phase II:   reduced graph generation 
Phase III:  cycle mapping/ 
                 fixed point iteration 

Experiment : run on 3.2GHz Xeon cluster, 1,2,4,8,16,32 processors 
# flows = 118,828 x # procs 

Results 

Phase III delay grows due to 
irregular load  
 
32 processor problem finishes in 
2.3 x the 1 processor problem 



Conclusions 

• Coarse scale simulation of network flows is a 
necessary component of large-scale network 
simulation 

– We’ve shown how to do it efficiently 

• Faster than real-time on large problems 

• Accurate enough for the training context for which it 
was designed 

– Parallelization is a different talk… 


