

Reflections on RANS* Modeling

Philippe Spalart Boeing Commercial Airplanes

In collaboration with Strelets NTS group, St. Petersburg, Russia

*Reynolds-Averaged Navier-Stokes

Opinions on RANS* Modeling

Philippe Spalart Boeing Commercial Airplanes

In collaboration with Strelets NTS group, St. Petersburg, Russia

*Reynolds-Averaged Navier-Stokes

Outline

- RANS is still in high demand, and will be for 50+ years
 - Re-visit feasibility of Large-Eddy Simulation (LES) in real life
- RANS and LES are not enemies, but partners
 - Covering different regions in a Detached-Eddy Simulation (DES)
 - Direct Numerical Simulation and LES "educating" RANS models
- Steady and Unsteady RANS, DES, for massive separation
 - No simple answers, and many purposes
 - All simulation modes need to be understood
- Progress in practical RANS models slight since 1990's
 - Many impediments to decisive progress
 - The "Fundamental Paradox" of RANS modeling
 - New issue of multiple solutions
- Comments on Reynolds-Stress-Transport Modeling
 - Successes, but mostly away from aeronautical flows
- Resilience of Logarithmic Law in pressure gradient: a DNS
 - Example of "what we don't know" about turbulence
- Summary and Grand Plan

DEING

RANS Still in High Demand

- In industrial steady/unsteady CFD
- For boundary layers in hybrid methods (1997 DES paper)
 - LES is still unaffordable in leading-edge and nose regions
- For wall region under an LES
 - Work of Nikitin et al., Piomelli group, NTS, others
- Also needed for:
 - Small components next to large ones
 - Separation bubbles: this is up to the user

• Trend towards initiating LES before separation in hybrid CFD

- RANS models will never be perfect, whereas LES improves with grid
- Need unsteady quantities for noise and vibration
- Challenge is generation of LES content

• Is the hybrid method of the future zonal, or not?

- Zonal methods have successes in semi-complex situations
 - They give more control ("ZDES" work of S. Deck at ONERA)
- Non-zonal methods are far more convenient

Feasibility of LES

• The rationale for DES, in 1997, was:

- Pure LES for wings will not be feasible until 2045, assuming Moore's Law
 - I assumed "a factor of 5 every 5 years" but "a factor of 2 every 2 years" gives 2041 instead
- This is even with full Wall Modeling inside the LES (unlimited Δx^+ , etc.), and other favorable assumptions, such as perfect knowledge of δ and grid design
- The LES needs 10^{11} grid points
- Therefore, for now, the boundary layer needs RANS
 - At least near the leading edge

Feasibility of LES

• NASA-Ames/Stanford/CTR position on the cost of LES:

- Also for LES with Wall Modeling, as opposed to "wall-resolved" LES
- 1979, Chapman, AIAA J.: $N_{points} \sim Re^{2/5}$
 - Comes from averaging δ , the boundary-layer thickness (which is incorrect)
- 2012, Choi & Moin, Physics of Fluids: N_{points} ~ Re
 - Comes from averaging $1/\delta^2$ (which is correct)
- Re is based on the lateral direction, and $Re_z = O(500 \text{ million})$ for a wing
- New rough estimate for grid points in full LES is much higher:

$$\frac{N_{2012}}{N_{1979}} \approx 165,000$$

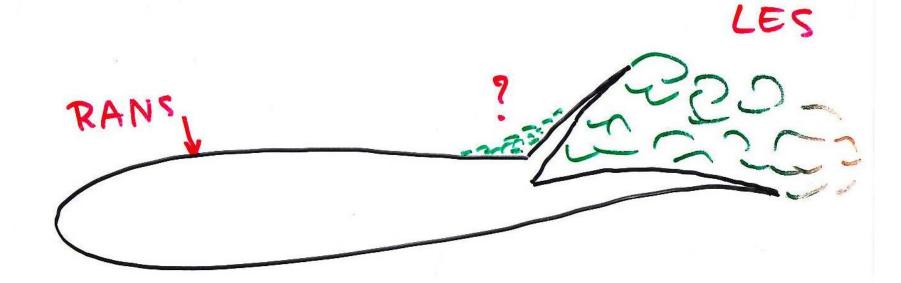
- That is about 2¹⁷ or 34 years more to wait, if you apply Moore's "2 in 2" law
- And do not forget the extra time steps needed
- Formula of Choi & Moin

RANS Still in High Demand

- In industrial steady/unsteady CFD
- For boundary layers in hybrid methods (1997 DES paper)
 - LES is still unaffordable in leading-edge and nose regions
- For wall region under an LES
 - Work of Nikitin et al., Piomelli group, NTS, others
- Also needed for:
 - Small components next to large ones
 - Separation bubbles: this is up to the user

• Trend towards initiating LES before separation in hybrid CFD

- RANS models will never be perfect, whereas LES improves with grid
- Need unsteady quantities for noise and vibration
- Challenge is generation of LES content


• Is the hybrid method of the future zonal, or not?

- Zonal methods have successes in semi-complex situations
 - They give more control ("ZDES" work of S. Deck at ONERA)
- Non-zonal methods are far more convenient

Original Sketch, 1997

Sketch of a Detached-Eddy Simulation

"Natural" DES

- Work of Chaderjian & Buning at NASA
 - Lots of "worms!"
 - DES gives best Figure of Merit

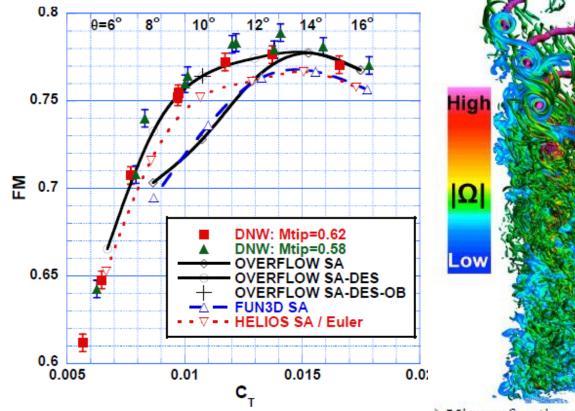
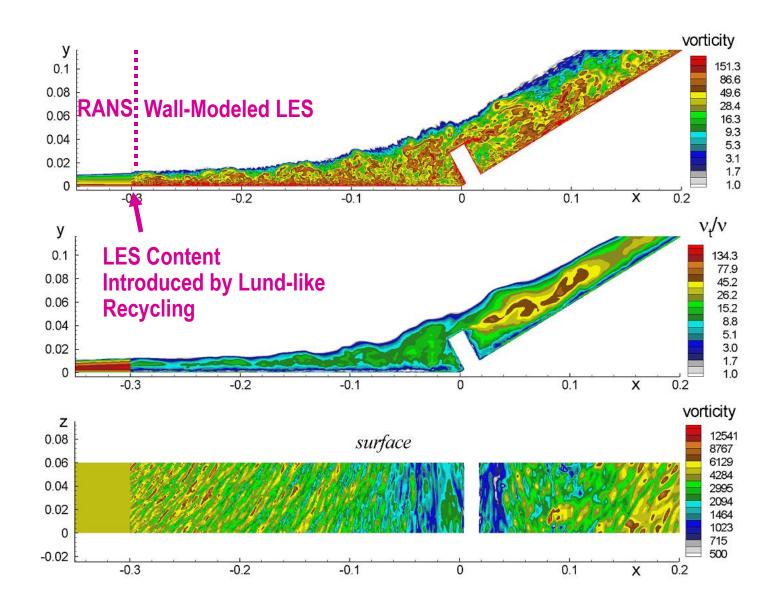


Figure 13 Figure of merit variation with C_T for the TRAM) View of entire vortex wake. rotor in hover. $M_{tip}=0.625$, Re=2.1 million.

RANS

LES

9


DBOEING Simulation of a Small Separation Region

Purpose: predict noise for pilots, caused by reattachment on windshield

RANS-to-LES Switch in Attached Boundary Layer

Outline

- RANS is still in high demand, and will be for 50+ years
 - Re-visit feasibility of Large-Eddy Simulation (LES) in real life
- RANS and LES are not enemies, but partners
 - Covering different regions in a Detached-Eddy Simulation (DES)
 - Direct Numerical Simulation and LES "educating" RANS models
- Steady and Unsteady RANS, DES, for massive separation
 - No simple answers, and many purposes
 - All simulation modes need to be understood
- Progress in practical RANS models slight since 1990's
 - Many impediments to decisive progress
 - The "Fundamental Paradox" of RANS modeling
 - New issue of multiple solutions
- Comments on Reynolds-Stress-Transport Modeling
 - Successes, but mostly away from aeronautical flows
- Resilience of Logarithmic Law in pressure gradient: a DNS
 - Example of "what we don't know" about turbulence
- Summary and Grand Plan

DEING

Four Types of Bluff-Body Simulations

All cases with laminar se

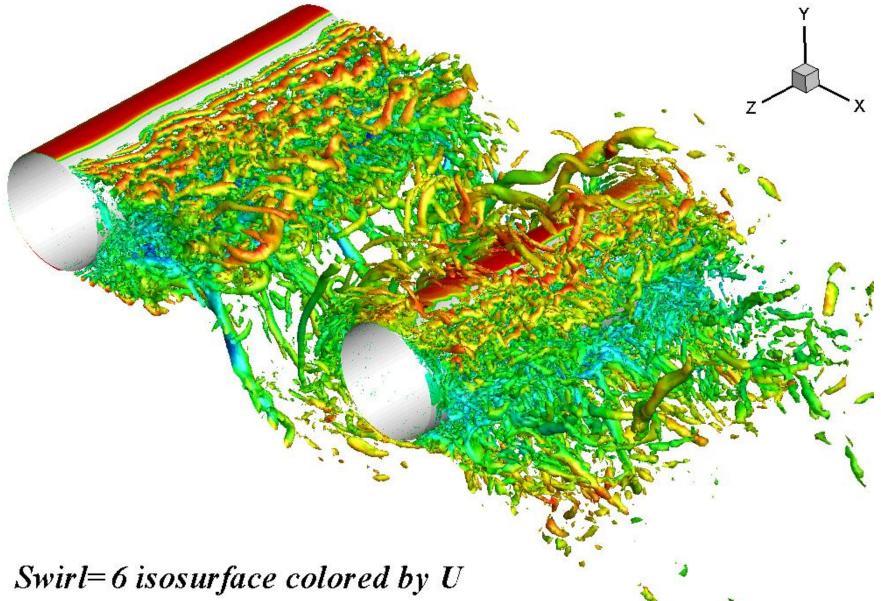
steady RANS, C_d ~ 1.73

DEING

DES, C_d ~ 1.26

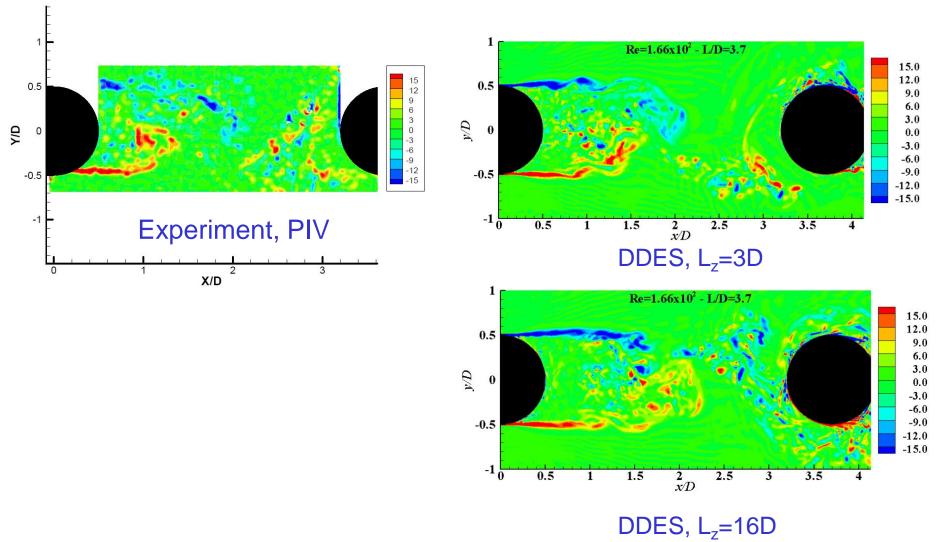
Experiment

3D Unsteady RANS, C_d ~ 1.24


Spectrum of Approaches to Turbulence

Name	DNS	LES	DES	RANS
Empiricism	No	Low	Medium	High
Unsteady	Yes	Yes	Yes	No
				(can be)
# of points	10 ²⁰	1011	10^7 to 10^8	107
(Boeing wing)				
In Service	2080*	2045*	2010	1995
(Boeing)			(sub-regions)	
Vibration,	Yes	Yes	Yes	No
Noise				(buffet maybe)

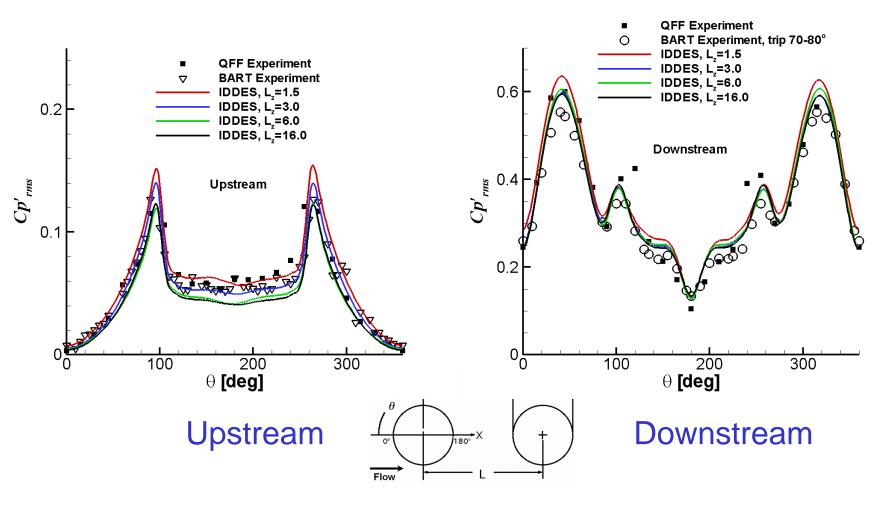
*Assuming Moore's Law holds!


DES of Tandem Cylinders

Comparison with NASA Experiment


Snapshots of Spanwise Vorticity

Comparison with NASA Experiment


Surface Pressure Coefficient

Comparison with NASA Experiment

RMS of Surface Pressure

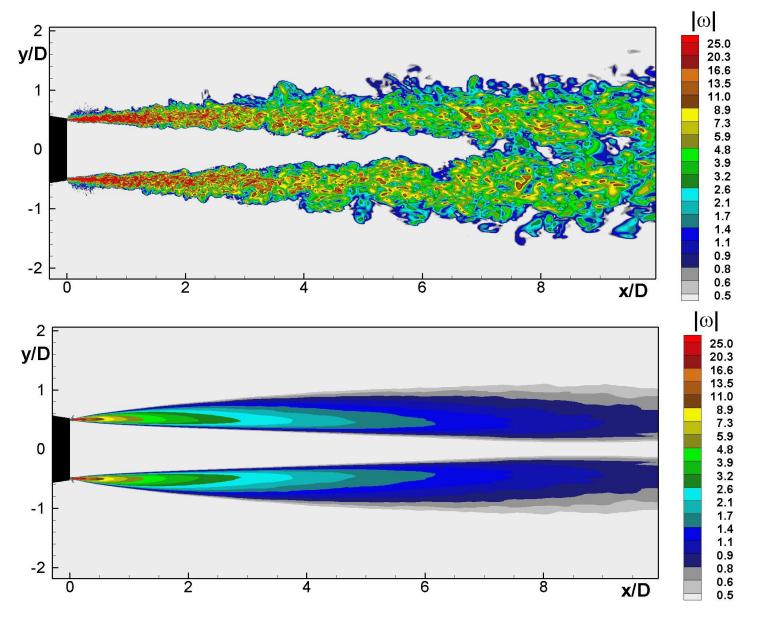
Outline

- RANS is still in high demand, and will be for 50+ years
 - Re-visit feasibility of Large-Eddy Simulation (LES) in real life
- RANS and LES are not enemies, but partners
 - Covering different regions in a Detached-Eddy Simulation (DES)
 - Direct Numerical Simulation and LES "educating" RANS models
- Steady and Unsteady RANS, DES, for massive separation
 - No simple answers, and many purposes
 - All simulation modes need to be understood
- Progress in practical RANS models slight since 1990's
 - Many impediments to decisive progress
 - The "Fundamental Paradox" of RANS modeling
 - New issue of multiple solutions
- Comments on Reynolds-Stress-Transport Modeling
 - Successes, but mostly away from aeronautical flows
- Resilience of Logarithmic Law in pressure gradient: a DNS
 - Example of "what we don't know" about turbulence
- Summary and Grand Plan

DEING

The Fundamental Paradox of **Turbulence Modeling?**

1) Turbulence does not exist at a point (x,y,z,t)


- It can be understood and predicted only in a *region* of space and time,
 - Large enough for some repeatable behavior to take place
 - Such as establishing a k^{-5/3} spectrum, or logarithmic layer
- E.g., an entire boundary layer that has developed normally for at least $x = 10 \delta$ (δ the BL thickness)

2) Defining "turbulence at a point" is the basic demand of CFD!

- Not only at a point, but using a *small* number of variables
- The solution to this impossible problem will not be pure
 - Non-local "wall-blockage" terms have a lot to offer, -But they cannot be derived from the Reynolds-Stress transport equations
- Algebraic RANS models such as Cebeci-Smith treated entire regions at once
- Modern differential RANS models do not
 - For compatibility with unstructured grids and parallel machines
- In the end, transport and diffusion "glue" the region together, and we *test* the model over a large region in (x,y,z,t)

Reynolds Averaging

State of RANS Modeling in Aeronautics

- Turbulence Modeling Working Group, led by Brian Smith
 - <u>http://turbmodels.larc.nasa.gov/</u>, created by Rumsey
 - Principal models fully documented, give same answer in all codes
- Large market share for two models, SA and SST, by F. Menter
 - Both from 1992, both pragmatic, both pretty much NASA Ames products!
 - Small number of versions
 - Both use wall distance
 - Improvements: curvature/rotation, roughness, compressibility, nonlinear...
 - -k- ϵ is alive and has prestige, although it is quite poor for separation
 - Heat transfer is lagging
- Apparent failure of rigorous thinking (based on Reynolds equations)
 - It leads to more complex models; Full Reynolds stress or Algebraic Stress
 - No consistent accuracy advantage in thin shear flows
 - Rebellious at times
 - More systematic two-equation model design $(k-\phi)$ at ONERA
 - Optimize choice of second variable. Has not spread into codes
 - Difficulty matching DNS Reynolds stresses, which violate the law of the wall
 - Dependence on Reynolds number and pressure gradient

BOEING

Novel uses of DNS/LES for RANS Modeling

- Create the "target" model quantities from unsteady field
 - Traditionally, k and ε
 - But errors can compensate, and give the right v_t (e.g. in log layer)
 - Eddy viscosity directly, with

$$v_{eff} == \frac{-\langle u_i u_j \rangle S_{ij}}{2 S_{kl} S_{kl}}$$

- Interpreted as least-squares fit, or a TKE production match
- Also constants in QCR and other nonlinear constitutive relations
 - With similar least-squares formulations
 - An alternative to Rodi-type derivations of Algebraic-Stress Models
- Test the model equations in the simulation field
 - Work by NTS-Boeing, and by Leschziner's group
 - Freeze the mean flow field, and solve the model in it
 - Advantage: see the error immediately, instead of only seeing it after it modifies the velocity field

Progress in RANS Modeling?

The adventures of the Karman constant

- Current range of serious experimental values for κ : 0.38 to 0.42
 - Compensation by C makes the effect small until $y^+ \sim 10^4$
- Less important than the model's reaction to pressure gradient
- New proposal to have different Karman constants in different flows!
 - Such in a pipe and in a boundary layer
 - Would be the death of the Law of the Wall... and of turbulence modeling!

Little input from DNS

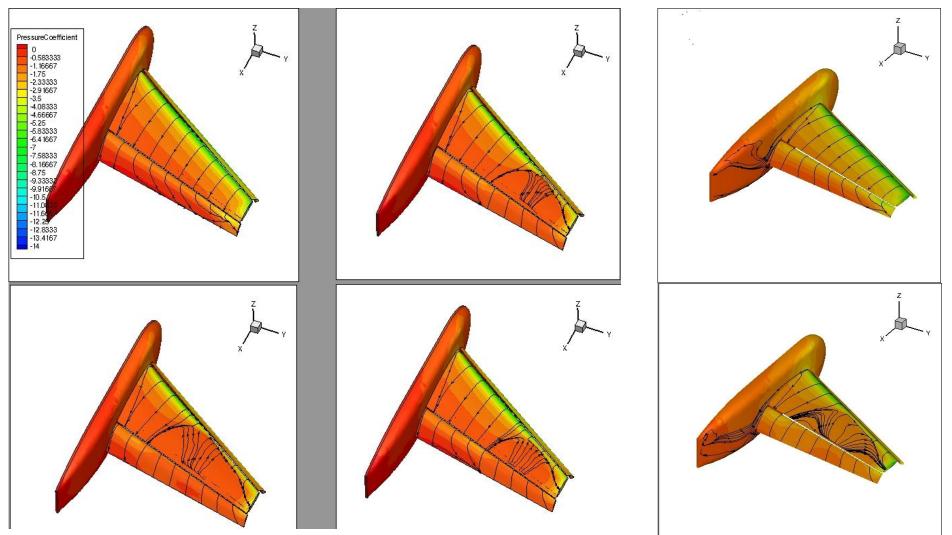
– Flows too simple

- Reynolds number too low (e.g., NO impact of DNS on Karman-constant debate)
- LES is starting to be used well, e.g. on "hill flows"

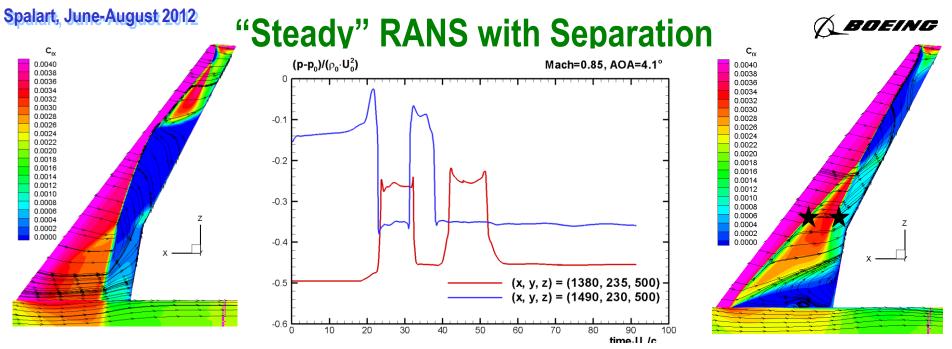
• Can a better model be accepted tomorrow?

- Difficulty in getting published and (more important) added to mainstream codes

Can the best existing model be determined today?


- Are experiments good enough?

- No "perfect" measurements
- Lack of detail, so that testing is indirect (for instance, shock position)
- Is RANS CFD good enough to judge models with full precision?
 - Grid convergence not certain, even for a simple wing-body case!
 - Multiple solutions, when separation gets interesting


Multiple Solutions on Trap Wing at 28°

S-A Model

k - ω

GGNS code, fixed grid, fully turbulent. All iteration-converged to machine zero. Overflow and NTS have similar "stories."

- NTS code: high-order, structured, verified in unsteady flows. Fully turbulent
- CRM case, M = 0.85 and $\alpha = 4.1^{\circ}$
- Left: steady code, with QCR. No side-of-body separation; mid-wing separation
- Middle: unsteady code, started from steady solution
 - Pressure histories at two \bigstar field points reveal shock rearrangement
- After 60 chords of flight the flow is in a new "settled" state... and radically different!
 - The residuals are calculated the same way in both cases
- This flow was given back to steady-state code... which slowly returned to first state!
- Notice the solution did NOT enter a limit cycle; i.e., the answer is not "buffet"
- Other codes (GGNS, Overflow) also give solutions which depend on initial state

Outline

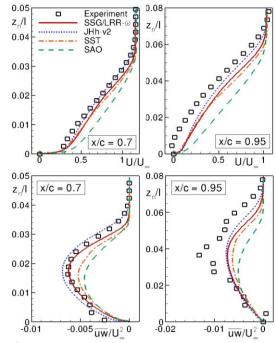
- RANS is still in high demand, and will be for 50+ years
 - Re-visit feasibility of Large-Eddy Simulation (LES) in real life
- RANS and LES are not enemies, but partners
 - Covering different regions in a Detached-Eddy Simulation (DES)
 - Direct Numerical Simulation and LES "educating" RANS models
- Steady and Unsteady RANS, DES, for massive separation
 - No simple answers, and many purposes
 - All simulation modes need to be understood
- Progress in practical RANS models slight since 1990's
 - Many impediments to decisive progress
 - The "Fundamental Paradox" of RANS modeling
 - New issue of multiple solutions
- Comments on Reynolds-Stress-Transport Modeling
 - Successes, but mostly away from aeronautical flows
- Resilience of Logarithmic Law in pressure gradient: a DNS
 - Example of "what we don't know" about turbulence
- Summary and Grand Plan

DEING

Arguably THE sound basis for RANS modeling

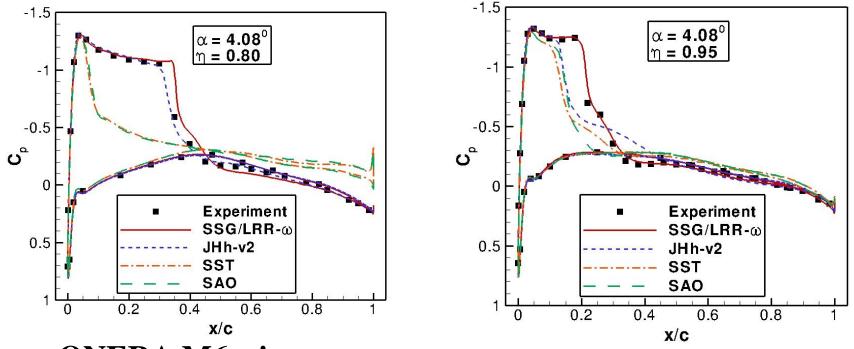
- Starts from exact equations
 - Subject to Closure Problem
 - More exact terms than with 1-2 eqs, first of all, the individual productions
 - Modeling "should matter less" if pushed to higher-order terms
- However, quickly uses "plausible approximations"
 - Such as anisotropic dissipation tensor (shift to pressure term)
 - The more successful models tend to use wall distance and wall-normal

• Two-equation modeling considered a "poor cousin"


- Let alone one-equation modeling! (-:
- Simpler models are "fighting back"
 - SST, SARC, QCR, other corrections
 - Not the linear *k*-ε model of the 1970's!

• Success stories, relative to eddy viscosity:

- Mostly in thin shear flows with "extra strains"
- None for massive separation (e.g., SRANS of cylinder?)
- Not sure of curvature effects (Coanda), corner flows (CRM), even simple vortex

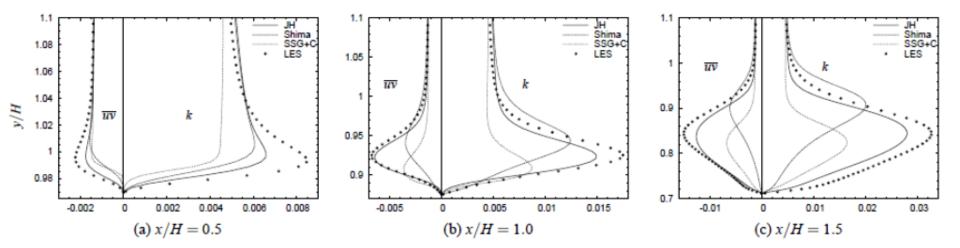


• AIAA 2012-0465 by Cécora et al, Braunschweig

- Two modern RST models compared with SST and SA
- TAU unstructured code of DLR. The only major aero code with RST?
- CPU cost double of SST cost, slower convergence; needs higher-quality grid

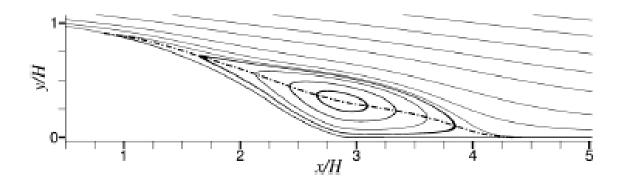
• Airfoil case

- Differences appear near Clmax
- RST models do not beat SST
- 2D CFD versus 3D wind-runnel test. But 3D CFD had far too much separation

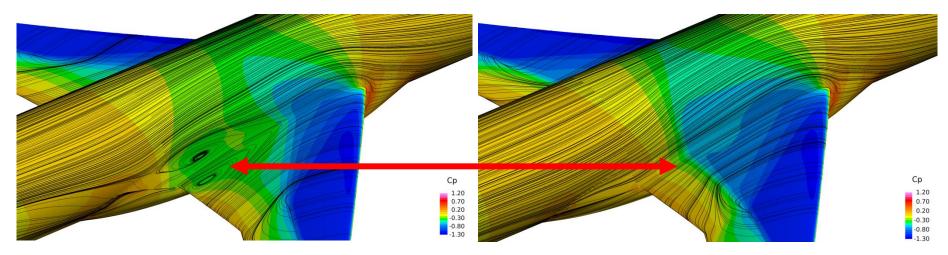


• ONERA M6 wing

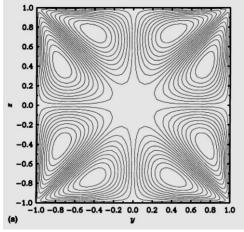
- Cécora et al. results again
- Relevant to Boeing wing shock position

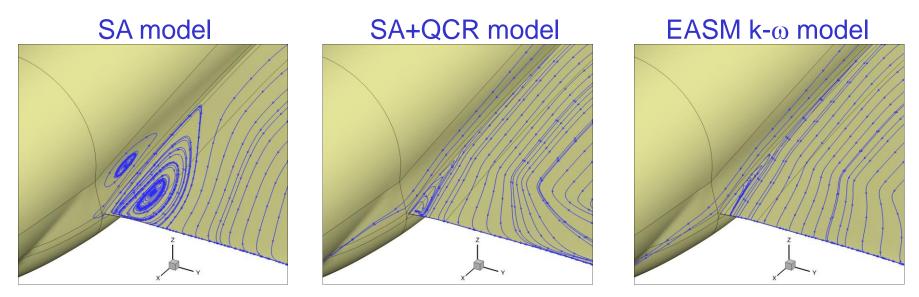

• Two sections:

- Left: success story for both RST models
- Right: success for only one of the RST models



• Work of Bentaleb, Lardeau & Leschziner at TSFP7


- TKE and Reynolds shear stress after separation from a smooth surface (subsonic)
- Three reputed second-moment closures give three widely different results


Quadratic Constitutive Relation, QCR

- Results of Yamamoto *et al* at 2012 Drag Prediction Workshop
- Called "Nonlinear Constitutive Relation" in author's 2000 IJHFF review
 - Prefer acronym QCR now
 - A "simple man's EARSM"
 - Similar to a model of Wilcox & Rubesin
 - Applicable to any eddy-viscosity model, e.g., SST
- Gives Turbulent Secondary Flows in square pipes
- Strongly reduces corner separation (without adjustment)
- Example of "easy" improvement
- Based on intuition

Preliminary: Effect of Nonlinear Terms on Side-of-Body Separation

CRM configuration from DPW-IV Multiblock grid from JAXA, AoA=4 deg, M=0.85, Re_{MAC}=5 million

- Results of Rumsey and team at Langley
- QCR and EARSM have similar effect on corner flow
- Full Reynolds-Stress model performance unknown as of now
- Race will continue...

Research team leaders: Chris Rumsey (NASA LaRC)

Prediction of Natural Transition

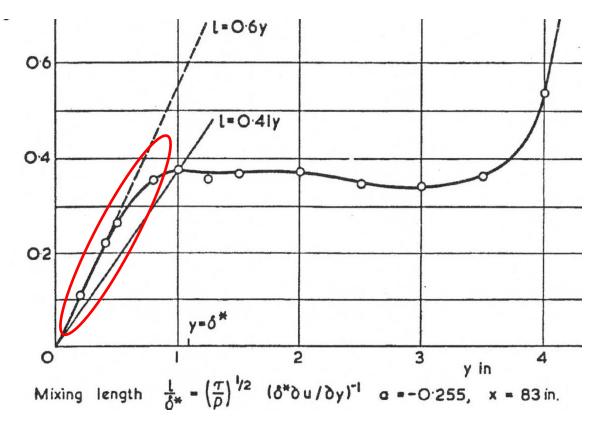
- Need: 2D Tollmien-Schlichting and 3D Cross-Flow modes
 - + Transition due to separation
 - + By-pass transition, esp. for internal flows
- Classic: eⁿ method in boundary layer profiles
 - Near-classic: database/neural-network methods in same profiles (Drela, ONERA, Boeing...)
- Typical until now: run Boundary-Layer code in NS pressure distribution, and run near-classics in BL profiles
 - NS velocity profiles hard to use directly
 - Give transition line back to NS code
- New wave: PDE method inside NS code
 - Langtry-Menter model, SST + two equations
 - Very convenient, rather robust and successful...
 - Still lacks 3D CF mode (and high Mach?)
- Future: healthy rivalry between eⁿ and PDE
 - Both need info about surface and ambient perturbations
- Relaminarisation: RANS models miss it

BOEING

Outline

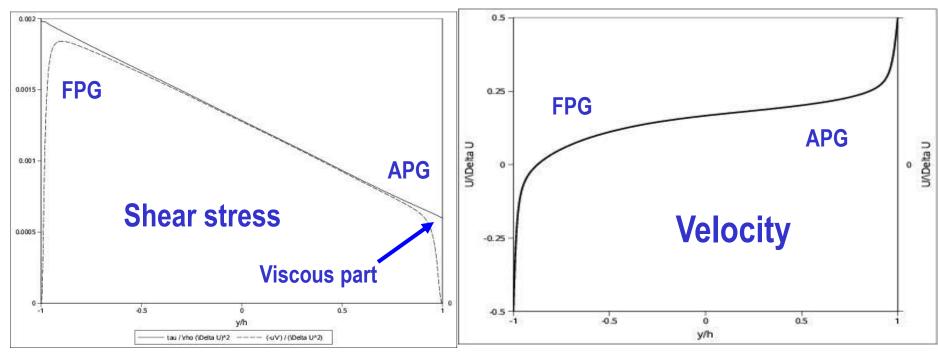
- RANS is still in high demand, and will be for 50+ years
 - Re-visit feasibility of Large-Eddy Simulation (LES) in real life
- RANS and LES are not enemies, but partners
 - Covering different regions in a Detached-Eddy Simulation (DES)
 - Direct Numerical Simulation and LES "educating" RANS models
- Steady and Unsteady RANS, DES, for massive separation
 - No simple answers, and many purposes
 - All simulation modes need to be understood
- Progress in practical RANS models slight since 1990's
 - Many impediments to decisive progress
 - The "Fundamental Paradox" of RANS modeling
 - New issue of multiple solutions
- Comments on Reynolds-Stress-Transport Modeling
 - Successes, but mostly away from aeronautical flows
- Resilience of Logarithmic Law in pressure gradient: a DNS
 - Example of "what we don't know" about turbulence
- Summary and Grand Plan

DEING

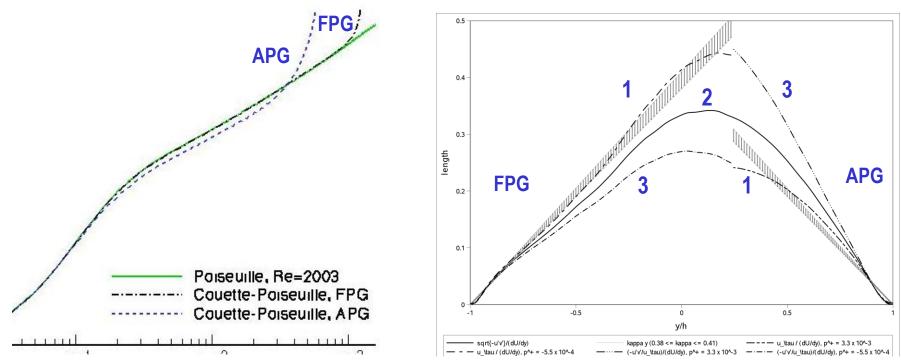


Resilience of Log Law to Pressure Gradient

- In a classical constant-stress layer $(y^+ >> 1, \tau^+ = 1)$, three length scales are equal and grow linearly:
 - $u_{\tau}/(dU/dy) = \kappa y \qquad \log law \qquad (1)$ $- l = \kappa y \qquad \text{mixing length} \qquad (2)$
 - $v_t / u_\tau = \kappa y$ eddy viscosity (3)
- Physically, these hypotheses are equally justified (my opinion)
- With τ^+ different from 1 because of PG, they conflict!
- In 1975 Galbraith, Sjolander & Head found that (1) is better
 - APG boundary layers, experiments
- With Johnstone and Coleman, we did a DNS (JFM)
 - Couette-Poiseuille flow
 - It has one FPG wall, Poiseuille-like; and one APG wall, new
- This question matters a lot to RANS modeling
 - Algebraic models used (2), for convenience/local character
- It also matters to theory, or "theory"
 - (2) is local; (1) and (3) are not: they involve u_{τ} a wall quantity. Why?


Mixing-Length Concerns

- Galbraith figure, 1975
 - Bradshaw-Ferris experiment with strong APG
 - Mixing length far in excess of κy


Couette-Poiseuille Flow

- Left: Reynolds and total shear stress
 - Picked a ratio τ_2 / τ_1 of 0.3 between walls
 - Re is not too low ($\Delta U h / v = 20,000$): buffer layers not too invasive
- Right: velocity
 - FPG wall, with higher u_{τ} is somewhat dominant

Couette-Poiseuille: the Outcome

- <u>Left:</u> velocity near both walls "trying hard" to have a log law
 - FPG in close agreement with Hoyas-Jimenez Poiseuille DNS (sadly, a "curving" log law)
 - APG slightly lower
- <u>Right:</u> the three lengths scales
 - Also showing theory, with $\kappa = 0.38$ to 0.41 (roughly the current uncertainty band)
 - (1), the "log law," is clear winner, especially on FPG side (as it was in Poiseuille flow)
 - This is a quantitative, not an asymptotic result (not needing $y \ll \delta$)

Length Scales in Hoyas-Jimenez Channel DNS

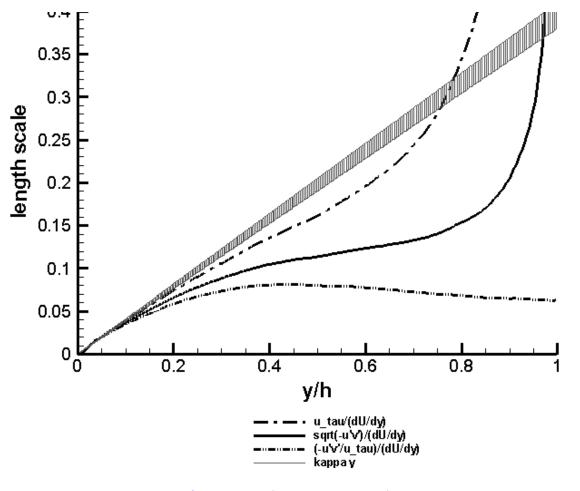


Figure by R. Johnstone

Length Scales in Hoyas-Jimenez Channel DNS

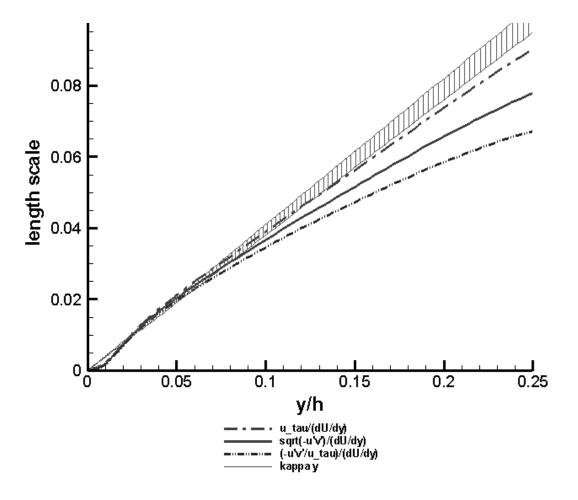


Figure by R. Johnstone

Lessons from Couette-Poiseuille DNS

• The *velocity* law of the wall appears more accurate

- The mixing-length law is local, and more intuitive
 - used in numerous algebraic RANS models, and "wall models" in LES
- This (likely) fact was observed already in the 1970's
 - But "inconvenient" in models. Only Johnson & Coakley tried it
 - Except for Wall Functions
- We only have one new case
 - Other DNS and experiments desirable,
 - Especially with higher Re and weaker Adverse PG: here, $dp/dx^+ = 0.0034$

• "Modern" transport-equation models

- Do not have a "declaration" in this matter (i.e., between eq. 1, 2, or 3)
- Would not be easy to re-train if they fail. They are simple and rigid!
- However, this behavior is at the core of separation prediction
- Models are being tested
 - Unfortunately, they start with too little skin friction in Couette flow
 - Possibly due to streamwise rollers

• Observe the very pragmatic view-point

- Theory is weak; models are trained from data

Summary

- RANS Modeling is more important than ever, because the rest of CFD is improving; hardware and software
 - 3D solutions are everywhere
 - Modeling is less "elegant" than we would like
 - elegance can hide in equations
- It is possible Moore's Law will saturate, and that the DNS-LES "invasion" will never reach full-size airplanes

- Remember, CPU cost = $(goodness)^4$. $10^{1/4} = 1.8...$

- RANS is a partner with LES
 - Hybrid RANS-LES methods are here to stay, but lack foundations
 - The hand-over from RANS to LES will slowly move upstream
 - They are not "push-button" methods. User burden is very high

Summary

• Progress in pure RANS modeling is held back by:

- Lack of new ideas that work better than well-established models
- Difficulty in improving a given model on enough "fronts" at once
- Low success of "rigorous" modeling, compared with "intuitive and pragmatic" modeling
- Low tolerance for complex equations
 - From code writers. Even the SA Rotation-Curvature term gets bugs
 - From RANS modelers. A 7-equation models is very hard to master
- Lack of perfect, detailed experiments
- Lack of complex-flow, high-Reynolds-number DNS
- Lack of perfect CFD (grid convergence) even for a simplified flap system; multiple solutions in fun regions

• Prediction, even prescription of transition in CFD is delicate

- More aircraft with laminar regions are coming (real, and UAV's!)

Summary "by the Template"

• Status:

- RANS modeling remains central to Aerospace and other engineering
- We make incremental progress; no prospect of paradigm change
- CPU power and CFD code progress are mildly helpful
- Challenges:
 - Field is ideas-limited, problem is "hardened"
 - Systematic approaches to RANS modeling do not win over intuition
 - Exact results (2D2C, HIT, RDT...) are in far corners of the envelope
 - RANS modeling faces a physical "Fundamental Paradox"
 - Pure LES is not "around the corner" at real-life Reynolds numbers

Proposed approach:

- Draw on the whole planet and on neighboring fields
- Invest both in RANS and Turbulence-Resolving methods
 - Reward RANS research, even if it sounds funny
 - Solidify hybrid RANS-LES approaches, if possible
- Nurture research DNS/LES, and detailed experiments
 - Have no patience for "experiments versus CFD" or "LES versus RANS" attitudes

Backup Slide

Formula of Choi & Moin

$$N_{wm} = 54.7 \frac{L_z}{L_x} n_x n_y n_z \operatorname{Re}_{Lx}^{2/7} \left[\left(\frac{\operatorname{Re}_{Lx}}{\operatorname{Re}_{x0}} \right)^{5/7} - 1 \right]$$

- Assumptions:
 - Number of points inside δ^3 : $n_x n_y n_z = 2,500$
 - Re_{x0} , the Reynolds number at transition: 5.10⁵
- For two sides of wing with aspect ratio 4 and $Re_x = 10^8$ this formula gives $N_{wm} = 9 \cdot 10^9$ (as in article)
- For Boeing wing, $Re_x = 5 \cdot 10^7$, aspect ratio 12, and (more realistic) $20^3 = 8,000$ points in δ^3 :

$$N_{wm} = 4 \cdot 10^{10}$$

 Very close to estimate in 1997 DES paper, namely 10¹¹ points (this assumed a swept wing with turbulent leading edge)