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Instead of introduction

Why | did Residual-based schemes research ?

- (1996) Leading the CFD/CAE group (Centrifugal Compressors) at
COMOTI Bucharest

- Challenge: to perform LES of turbulence inside high-PR CC

- Write a new CFD code (together with Aerospace Department at
“Polytechnica” Institute Bucharest) for industrial LES

- Found a few papers about early Residual-Distribution schemes
- Learned more about these scheme at a VKI Advanced CFD course

- Went to Lund Institute to learn LES of turbulence and develop a
(hopefully) best-in-class LES algorithm, for industry (Dec.1997)



A short early history of MU-RDS

Multidimensional Upwind Residual Distribution scheme :

- Fluctuation-Splitting (RDS) proposed in 1986 by professor Phil Roe

- Developed by professors and students at Michigan University (Roe), VKI
(Deconinck), Bordeaux University (Abgrall), Polytechnica di Bari, Lund
(Caraeni), Univ. of Leeds (Hubbard) etc.

- Compact matrix distribution schemes for steady Euler and Navier-Stokes
equations (E.van der Weide, H. Paillere), 1996.

- Second order RD scheme for LES of turbulence using a residual-
property preserving, dual time-step approach (Caraeni, 1999).




A short early history of MU-RDS (cont.)

Multidimensional Upwind Residual Distribution scheme:

Second order space-time RD scheme for unsteady simulations (2000, VKI)
(using space-time integration/residual-distribution to achieve accuracy)

Third order RD scheme for steady inviscid flow simulations (2000, LTH)
(node gradient-recovery for quadratic solution representation)

Third order RD scheme for the unsteady turbulent flow simulations (2001,
LTH). (node gradient-recovery and residual-property satisfying)

Third order results with above gradient-recovery idea reported by Rad and
Nishikawa (2002, MU).

High-order (>3) RD scheme for scalar transport equations (2002, BU & MU).
(sub-mesh reconstruction for high-order solution representation)

“Third-order non-oscillatory fluctuation schemes for steady scalar
conservation laws ” M. Hubbard, 2008.



What is a Residual-Distribution scheme ?

V-F(u)=0

1. VK € Qp compute : ¢* = / V - Frlup)
i

2. Distribution : o = > (bf‘*
ie K
Distribution
coeff.s : o =plipk

3. Compute nodal values :
solve algebraic system



A 39 Order Residual-Distribution scheme
for Navier-Stokes simulations

(Residual-property satisfying formulation)

(A Third Order Residual-Distribution Method for Steady/Unsteady
Simulations: Formulation and Benchmarking, including LES,
Caraeni, VKI, 2005)




High-order RD scheme
for Navier-Stokes equations
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High-order RD scheme (cont.)
for Navier-Stokes equations

c _ ¢ <—— Convection flux cell-residual
o = o

@, :J'ﬂ F?/j'dv <—— Diffusion flux cell-residual
d

. "" = J:U U ,.dv|<— Unsteady term cell-residual
T

Update scheme for steady/unsteady simulations (Caraeni):
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High-order RD scheme (cont.)
for Navier-Stokes equations

Distribution schemes (for preconditioned system):
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High-order RD scheme (cont.)

How to construct a 3rd-order RDS (Ph.D. 2000, LTH):

1. Use (upwind or upwind-biased) uniformly bounded residual-distribution
coefficients (linearity/accuracy preserving RD scheme), and apply to total cell-
residual

2. Compute the total cell residual (convective + diffusive + unsteady terms)
with the required accuracy:.

- we used condition-1 + linear solution, second order accurate integration for

2"d order RDS
- we need to use condition-1 + use quadratic reconstruction, 3" order
accurate integration for 3" order RDS

The idea is to use the same accuracy-preserving RD scheme, as for second
order schemes, but compute the total cell residual with 37 order accuracy.




High-order RD scheme (cont.)
Convection residual discretization, 3rd order.

Use parameter variable Z and
L = v ,0(1, U, Uy, Us, H) assume a quadratic variation
over the tetrahedral cell.

Zj computed with 2"d order accuracy

(multi-step algorithm) Cell-residual in integral form:
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High-order RD scheme (cont.)
Convection residual discretization, 3rd order.
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High-order RD scheme (cont.)
Diffusion residual discretization, 3rd order.

o :m F.'dv :ﬁ F'.ds
T oT

Assuming a quadratic variation of the Z variables over the cell, the
diffusive flux vector integral can be computed over the cell-face.

S

Use the values of the Z variable and its gradients,
defined in the nodes of the high-order FEM tetrahedral-cell.

(DTV — ﬁ FV.dS = Z = (facek).nk U, = [(\/;u')’“\/;ul (\/;)a]
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High-order RD scheme (cont.)
Unsteady residual discretization , 3rd Order.

U,t
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2"d order discretization in time,
and 39 order in space:
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High-order RD scheme (cont.)
Monotone shock capturing

h°V?p
pav

1. Shock detection|¥ =¥(

)

or

Y=y

|VV| ) or ~ %¥nodes

|V><V| Z

2. Blending between the high-order scheme and
a first order positive RD scheme (the N-scheme)

where:y = (P, p,..)

T = (l—z//).CI)iLDA + ..

N

= 0 for a smooth flow
= 1 (discontinuity detected)



Summary of this 3" order RD algorithm

- Uses a Multi-D Upwind Residual-Distribution scheme

- Formulated for fully unstructured grids (tetrahedrons),
- Compact scheme, highly efficient parallel algorithm.

- Implicit time integration (dual time-stepping algorithm).
- 34 - order accuracy in space (using FEM integration)
- 2"d - order time discretization (BDF2 scheme)

- Acceleration techniques: preconditioning, point-
iImplicit relaxation, geometric multi-grid, etc.




Results

- Steady inviscid flows
a. Sine-bump channel flow inlet Mach 0.5.

- Steady viscous flows
c. Laminar flat-plate boundary layer, Reynolds 2000.

- Unsteady inviscid flows
b. Vortex transport by uniform flow Mach 0.04.

- Shock capturing
d. Shock vortex interaction.

- Large Eddy Simulation
e. LES of turbulent channel flow.




Steady Euler
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Inviscid sine bump channel flow: ¢ 7
- Inlet Mach number 0.5 _ _ p

Maximum entropy production: :
- 2nd order scheme E=2.3 e-4
- 3rd order scheme E=5.1e-6
- Cell centered FVM(2ndO) E=4.2 e-4
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Steady Navier-Stokes

Laminar viscous flow over a flat plate:
- Infinite Mach # 0.5, Re 2000
- Grid0 of 32x18 grid points
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Re=2000

16 :
14
12 ]
10 ]

- - = = Blasius-U/Uinf
—@— Num.3rdO LevO

—aA— Num.3rdO Levl

—=— Num.3rdO LeV2
Num.3rdO Lev3

o N e (o2} [e¢]
I A A A W

U/Uinf

15

0.1

Asymptotic accuracy
Laminar flat plate

—a— Num3rd

Error

0.1

0.01

0.001

0.0001

y*sqrt(Uinf/miu/x)

e I O
o N M O ©
| N T O T T T T

o N A O (o]
NN N N

Laminar flat plate boundary layer
Re=2000

- = = = Blasius-V/Uinf
—@— Num.3rdO LevO

—aA— Num.3rdO Levli
—— Num.3rdO Lev2
Num.3rdO Lev3

0 0.01 0.02 0.03
V/Uinf




Unsteady Euler

Vortex transport by Inviscid flow.
- Uniform flow Mach = 0.04

Third order results, grid 64x64
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Asymptotic accuracy

Vortical Euler flow
0.1 1

Unsteady Euler (cont.) ——rTT
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Vortex transport by Inviscid flow. A oo
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Unsteady Euler (cont.)

Vortex transport by Inviscid flow.
- Uniform flow Mach = 0.04

Third order results, grid 64x64
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Shock vortex interaction

3 _ Shock-vortex interaction.
2.4 - P
i ] - Steady shock in mid channel
- 15 _ - Vortex moves from left to right
1 — Note: vortex preserving strength,
. _ before and after crossing shock
o : ; : )




Shock vortex interaction
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LES of turbulent channel flow

Turbulent channel flow:
- Reynolds # = 5400
-Re,= 344

———-DNS(Kim et al.)
2ndO LES
3rdO LES

O  Exp. (Kreplin)
3.5 DNS (Kim et al.)
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Multidimensional Residual-Distribution
Solving for flow and “optimal” mesh

(Grids and solutions from Residual Minimization,
Nishikawa, Rad, Roe, 2001)




Solving for flow and solution using RDS

Main ideas:
- Use multidimensional RDS to compute solution at vertices,

- There are 5-6 times less vertices than cells in the tetrahedral-
cells mesh ...

- Use the extra “conditions” (cell-residual must be driven to
zero) to define mesh motion equations, using an LSQ approach,

- Algorithm computes an improved solution on a “optimized”
mesh, which minimizes the overall error in a specific norm.

(Nishikawa, 2001)




Solving for flow and solution using RDS

Flow over Joukowsky airfoil

' i Nishikawa, 2001
(known theoretical solution) (Nishikawa, 2001)
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Solving for flow and solution using RDS

Flow over Joukowsky airfoil
(known theoretical solution)

(Nishikawa, 2001)

-0.2 0 0.2 0.4 0.6 0.8 i 1.2 -0.2 0 02 0.4 0.6 0.8 1 1.2
x/ec x/c

Original mesh solution Cp, o Adapted mesh Cp, o

Comparison with theoretical solution ----



Why using Multi-D Residual-Distribution schemes ?

- Resolves better real complex multidimensional physics (!)
- It is much more accurate that 2"d order Finite Volume method,
- It is capable of handling complex geometry (formulated tetrahedrons),

- Has a compact stencil algorithm, at every step (which leads to very
efficient parallelization),

- It is relatively to easy to extend to high order accuracy (at least from
2"d to 3 order), and 3" order results are significantly more accurate,

- Can be used to solve for flow and node location - using the
combined RDS/LSQ approach - for an optimal solution, on a given
mesh topology.




Backup slides

.



ligh-order Residual Distribution Scheme
for Scalar Transport Equations
on Triangular Meshes

From “High-order fluctuations schemes on triangular meshes”
R.Abgrall and Phil Roe, 2002




High-order RD scheme for scalar equations
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High-order RD scheme for scalar equations

Scalar example : @-Vu =0 with @ = (y.1 — =) and hes

y { cos(2m(x +0.5))? if € [-0.75,—0.25]
mn —

0 otherwise

0 L i
d | 4.5 i L8]
mlet Dutl et




High-order RD scheme for scalar equations

Scalar example : @- Vu =0 with @ = (y,1 — ) and becs

0 otherwise

y { cos(2m(z +0.3))? if x € [-0.75,—0.25]
1mn —

0.0




High-order RD scheme for scalar equations
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Space-time Residual Distribution
schemes for unsteady simulations

“Status of Multidimensional Residual Distribution Schemes and
Applications in Aeronautics”,
Deconinck et al. AIAA 2000-2328.

“Construction of 2nd order monotone and stable residual distribution
schemes: the unsteady case’,
Abgrall et al. VKI 2002




Space-time RD for unsteady simulations
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Space-time RD for unsteady simulations

LDA space-time scheme: LDA+N space-time scheme:
D. LDA _ 0 D B _ 0
B N LDA
|n+1 — (IB "‘_)(D + (Di,n+1 = IcI)i,n+1 +(1_|)(Di,n+1
I (DX,t
—— O. +LD° - N
(ﬂ ); IB Z CI)i,n+1
J
pi = KT(Z K)™*
J

“Status of Multidimensional Residual Distribution Schemes and Applications in Aeronautics”
Deconinck et al. 2000




Space-time RD for unsteady simulations

Shock reflection on a forward facing
step (density plot)

Reflection of a planar
shock from a ramp (density plot)

Shock-vortex interaction

From “Construction of 2nd order monotone and stable residual distribution
schemes: the unsteady case”, Abgrall et al. 2002




Space-time RD for unsteady simulations

Convection of vortex
- Periodic BC’s
- One revolution simulated T
- 2nd and 39 order ST-RDS |
compared ot or
- Pressure contours displayed (a) ¢ = 0 (b) ¢ = Ls, ST-LDA(PY)
From (Nadege Villedieu, . |
VKI Ph.D., 2009) i
s} R & Initial
B\ & ——— - ST-LDA(P1)
1 94 %\ o ST-LDA(P2)

(c) t = gs, ST-LDA(P?) (d) t = ¢, Slice at y =0



