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Why I did Residual-based schemes research ? 
 

 - (1996) Leading the CFD/CAE group (Centrifugal Compressors) at 

COMOTI  Bucharest 
 

- Challenge:  to perform LES of turbulence inside high-PR CC 
 

- Write a new CFD code (together with Aerospace Department at 

“Polytechnica” Institute Bucharest) for industrial LES 
 

- Found a few papers about early Residual-Distribution schemes 
 

- Learned more about these scheme at a VKI Advanced CFD course 
 

- Went to Lund Institute to learn LES of turbulence and develop a  

            (hopefully) best-in-class LES algorithm, for industry (Dec.1997) 

 

 



 

Multidimensional Upwind Residual Distribution scheme : 
 

 

- Fluctuation-Splitting (RDS) proposed in 1986 by professor Phil Roe 
 

- Developed by professors and students at Michigan University (Roe), VKI 
(Deconinck), Bordeaux University (Abgrall), Polytechnica di Bari, Lund 
(Caraeni), Univ. of Leeds (Hubbard) etc. 
 

- Compact matrix distribution schemes for steady Euler and Navier-Stokes 
equations (E.van der Weide, H. Paillere), 1996. 

 

- Second order RD scheme for LES of turbulence using a residual-
property preserving, dual time-step approach (Caraeni, 1999). 

 

A short early history of MU-RDS 



Multidimensional Upwind Residual Distribution scheme: 
 

- Second order space-time RD scheme for unsteady simulations (2000, VKI) 

    (using space-time integration/residual-distribution to achieve accuracy) 
 

- Third order RD scheme for steady inviscid flow simulations  (2000, LTH) 

     (node gradient-recovery for quadratic solution representation) 
 

- Third order RD scheme for the unsteady turbulent flow simulations (2001, 
LTH). (node gradient-recovery and residual-property satisfying) 
 

- Third order results with above gradient-recovery idea reported by Rad and 
Nishikawa (2002, MU). 
 

- High-order (>3) RD scheme for scalar transport equations (2002, BU & MU). 

    (sub-mesh reconstruction for high-order solution representation) 

 

 “ Third-order non-oscillatory fluctuation schemes for steady scalar   

                            conservation laws ” M. Hubbard, 2008. 

   
 

A short early history of MU-RDS (cont.) 



Ricchiuto, CEMRACS, 2012 



A 3rd Order Residual-Distribution scheme 

 for Navier-Stokes simulations 
 

(Residual-property satisfying formulation) 

(A Third Order Residual-Distribution Method for Steady/Unsteady  

Simulations: Formulation and Benchmarking, including LES,  

Caraeni, VKI, 2005) 
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Jameson dual-time      

        algorithm 

High-order RD scheme 
for Navier-Stokes equations 
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Update scheme for steady/unsteady simulations (Caraeni):  

T

iB  Upwind matrix residual  

Distribution coefficient (bounded) 
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High-order RD scheme (cont.) 
for Navier-Stokes equations 

(conservativity) 
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Distribution schemes (for preconditioned system): 

Low Diffusion A (LDA) 

Lax-Wendroff (LW) 
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Computes the convective  

cell residual with second  

order accuracy (linear data) 

High-order RD scheme (cont.) 
for Navier-Stokes equations 



High-order RD scheme (cont.) 

How to construct a 3rd-order RDS  (Ph.D. 2000, LTH): 
 

1. Use (upwind or upwind-biased) uniformly bounded residual-distribution 

coefficients (linearity/accuracy preserving RD scheme), and apply to total cell-

residual 

 

2. Compute the total cell residual (convective + diffusive + unsteady terms) 

   with the required accuracy: 
 

   - we used condition-1 + linear solution, second order accurate integration for 

2nd order RDS  

   - we need to use condition-1 + use quadratic reconstruction, 3rd order 

accurate integration for 3rd order RDS 

 

The idea is to use the same accuracy-preserving RD scheme, as for second 

order schemes, but compute the total cell residual with 3rd order accuracy. 
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Use parameter variable Z and 

assume a quadratic variation 

over the tetrahedral cell. 
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High-order RD scheme (cont.) 
Convection residual discretization, 3rd order. 

Cell-residual in integral form: 
Z,j computed with 2nd order accuracy 

(multi-step algorithm)  



High-order RD scheme (cont.) 
Convection residual discretization, 3rd order. 
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 Assuming a quadratic variation of the Z variables over the cell, the 

diffusive flux vector integral can be computed over the cell-face.  

 

Use the values of the Z variable and its gradients, 

defined in the nodes of the high-order FEM tetrahedral-cell.  

High-order RD scheme (cont.) 
Diffusion residual discretization, 3rd order. 



High-order RD scheme (cont.) 
Unsteady residual discretization , 3rd Order. 
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2nd order discretization in time, 

and 3rd order in space: 



High-order RD scheme (cont.) 
 

Monotone shock capturing 

1. Shock detection                     or                        or 

  

 

2. Blending between the high-order scheme and  

a first order positive RD scheme (the N-scheme) 
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- Uses a Multi-D Upwind Residual-Distribution scheme 
 

- Formulated for fully unstructured grids (tetrahedrons), 
 

- Compact scheme, highly efficient parallel algorithm. 
 

- Implicit time integration (dual time-stepping algorithm).  
 

- 3rd - order accuracy in space (using FEM integration)  
 

- 2nd - order time discretization (BDF2 scheme) 
 

- Acceleration techniques: preconditioning, point-

implicit relaxation, geometric multi-grid, etc. 
 

Summary of this 3rd order RD algorithm 



- Steady inviscid flows 

      a. Sine-bump channel flow inlet Mach 0.5. 
 

- Steady viscous flows 

      c. Laminar flat-plate boundary layer, Reynolds 2000. 

 

- Unsteady inviscid flows  

      b. Vortex transport by uniform flow Mach 0.04. 
 

- Shock capturing 

      d. Shock vortex interaction. 
 

- Large Eddy Simulation 

      e. LES of turbulent channel flow. 

Results 



Inviscid sine bump channel flow: 

  - Inlet Mach number 0.5 
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RDS Solution on 32x8 grid 

Maximum entropy production: 

- 2nd order scheme               E=2.3 e-4 

- 3rd order scheme                E=5.1 e-6 

- Cell centered FVM(2ndO)   E=4.2 e-4 



Laminar viscous flow over a flat plate: 

  - Infinite Mach # 0.5, Re 2000 

  - Grid0 of 32x18 grid points 

Laminar flat plate boundary layer 
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Unsteady Euler 

Vortex transport by Inviscid flow. 

 - Uniform flow Mach = 0.04 

Third order results, grid 64x64 



Vortex transport by Inviscid flow. 

 - Uniform flow Mach = 0.04 

Unsteady Euler (cont.) 

Vorticity X=0.05, T=5
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Unsteady Euler (cont.) 

Vortex transport by Inviscid flow. 

 - Uniform flow Mach = 0.04 

Third order results, grid 64x64 

T= 0 T = 12 periods T = 24 periods 



Shock vortex interaction 

Shock-vortex interaction: 

 

- Steady shock in mid channel 

   

- Vortex moves from left to right   

 

Note: vortex preserving strength,  

before and after crossing shock 

 

 



Shock vortex interaction 



LES of turbulent channel flow 

Turbulent channel flow: 

  - Reynolds # = 5400 

  - Ret= 344 
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3rd O MDU             0.0640 |  1.164 

2nd O MDU            0.0627 |  1.186 

------------------------------------------- 

DNS (Kim et al.)     0.0643 |  1.162 



Multidimensional Residual-Distribution  

Solving for flow and “optimal” mesh 

(Grids and solutions from Residual Minimization,   

   Nishikawa, Rad, Roe, 2001) 



Solving for flow and solution using RDS 

Main ideas: 
 

- Use multidimensional RDS to compute solution at vertices, 
 

- There are 5-6 times less vertices than cells in the tetrahedral-

cells mesh … 
 

- Use the extra “conditions” (cell-residual must be driven to 

zero) to define mesh motion equations, using an LSQ approach, 
 

- Algorithm computes an improved solution on a “optimized” 

mesh, which minimizes the overall error in a specific norm. 

 

 (Nishikawa, 2001) 



Solving for flow and solution using RDS 

Flow over Joukowsky airfoil  

(known theoretical solution) 
 

Original mesh Adapted mesh 

(Nishikawa, 2001) 



Solving for flow and solution using RDS 

Flow over Joukowsky airfoil  

(known theoretical solution) 
 

Original mesh solution Cp, o Adapted mesh Cp, o 

(Nishikawa, 2001) 

Comparison with theoretical solution ---- 



 

- Resolves better real complex multidimensional physics (!) 
 

- It is much more accurate that 2nd order Finite Volume method, 
 

- It is capable of handling complex geometry (formulated tetrahedrons), 
 

- Has a compact stencil algorithm, at every step (which leads to very 

efficient parallelization),   
 

- It is relatively to easy to extend to high order accuracy (at least from 

2nd to 3rd order), and 3rd order results are significantly more accurate, 
 

- Can be used to solve for flow and node location - using the 

combined RDS/LSQ approach - for an optimal solution, on a given 

mesh topology. 
 

 

Why using Multi-D Residual-Distribution schemes ? 



Backup slides 



High-order Residual Distribution Scheme 

 for Scalar Transport Equations  

on Triangular Meshes  

From “High-order fluctuations schemes on triangular meshes” 

    R.Abgrall and Phil Roe, 2002 



High-order RD scheme for scalar equations 
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High-order RD scheme for scalar equations 



High-order RD scheme for scalar equations 



High-order RD scheme for scalar equations 

From (Hubbard, J. Computational Physics 2007) 



“Status of Multidimensional Residual Distribution Schemes and  

Applications in Aeronautics”, 

Deconinck et al. AIAA 2000-2328. 

Space-time Residual Distribution  

 schemes for unsteady simulations  

“Construction of 2nd order monotone and stable residual distribution 

schemes:  the unsteady case”,  

Abgrall et al. VKI 2002 



Space-time RD for unsteady simulations  
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“Upwind-in-time” 



Space-time RD for unsteady simulations  
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“Status of Multidimensional Residual Distribution Schemes and Applications in Aeronautics”  

  Deconinck et al. 2000 



Space-time RD for unsteady simulations  

Reflection of a planar  

shock from a ramp (density plot) 

Shock reflection on a forward facing  

step (density plot) 

Shock-vortex interaction 

From “Construction of 2nd order monotone and stable residual distribution 

 schemes: the unsteady case”, Abgrall et al. 2002 



Space-time RD for unsteady simulations  

Convection of vortex 
 

- Periodic BC’s 
 

-  One revolution simulated 
 

- 2nd and 3rd order ST-RDS  

   compared 

 

- Pressure contours displayed 

From (Nadege Villedieu , 

VKI Ph.D., 2009) 


