Debunking the Residuals Myth:

Using *residuals* to create accurate discretization schemes

Doru Caraeni

CD-adapco, **USA**

CFD Futures Conference, August 6-8, 2012

Instead of introduction

Why I did Residual-based schemes research ?

- (1996) Leading the CFD/CAE group (Centrifugal Compressors) at COMOTI Bucharest
- **Challenge:** to perform LES of turbulence inside high-PR CC
- Write a new CFD code (together with Aerospace Department at "Polytechnica" Institute Bucharest) for industrial LES
- Found a few papers about early Residual-Distribution schemes
- Learned more about these scheme at a VKI Advanced CFD course
- Went to Lund Institute to learn LES of turbulence and develop a (hopefully) best-in-class LES algorithm, for industry (Dec.1997)

A short early history of MU-RDS

Multidimensional Upwind Residual Distribution scheme :

- Fluctuation-Splitting (RDS) proposed in 1986 by professor Phil Roe
- Developed by professors and students at Michigan University (Roe), VKI (Deconinck), Bordeaux University (Abgrall), Polytechnica di Bari, Lund (Caraeni), Univ. of Leeds (Hubbard) etc.
- Compact matrix distribution schemes for steady Euler and Navier-Stokes equations (E.van der Weide, H. Paillere), 1996.
- Second order RD scheme for LES of turbulence using <u>a residual</u>-<u>property preserving</u>, dual time-step approach (Caraeni, 1999).

A short early history of MU-RDS (cont.)

Multidimensional Upwind Residual Distribution scheme:

- Second order space-time RD scheme for unsteady simulations (2000, VKI) (using space-time integration/residual-distribution to achieve accuracy)
- Third order RD scheme for *steady inviscid* flow simulations (2000, LTH) (node gradient-recovery for quadratic solution representation)
- Third order RD scheme for the *unsteady turbulent* flow simulations (2001, LTH). (node gradient-recovery and residual-property satisfying)
- Third order results with above gradient-recovery idea reported by Rad and Nishikawa (2002, MU).
- High-order (>3) RD scheme for scalar transport equations (2002, BU & MU).
 (sub-mesh reconstruction for high-order solution representation)

"Third-order non-oscillatory fluctuation schemes for <u>steady</u> scalar conservation laws " M. Hubbard, 2008.

What is a Residual-Distribution scheme?

 $\nabla \cdot \mathcal{F}(u) = 0$

- 1. $\forall K \in \Omega_h \text{ compute} : \phi^K = \int_K \nabla \cdot \mathcal{F}_h(u_h)$
- 2. Distribution : Distribution

$$\phi^K = \sum_{i \in K} \phi^K_i$$

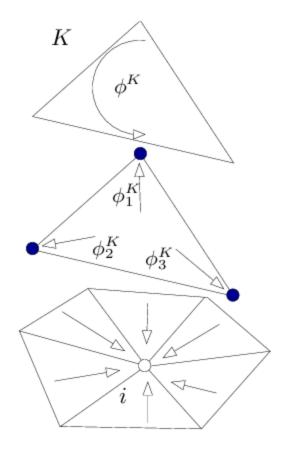
Distribution coeff.s :

$$\phi_i^K = \beta_i^K \phi^K$$

3. Compute nodal values : solve algebraic system

$$\sum_{T|i\in T} \phi_i^K = 0, \quad \forall i \in \Omega_h \tag{1}$$

$$|C_i|\frac{du_i}{dt} + \sum_{K|i \in K} \phi_i^K = 0$$



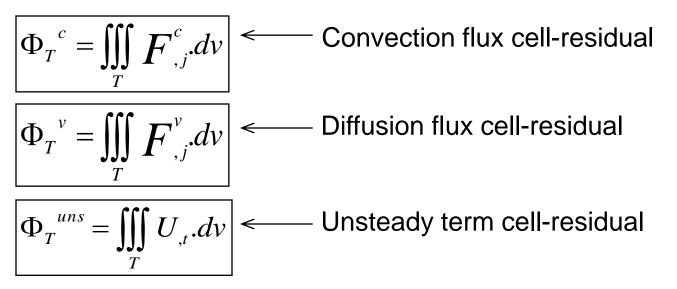
Ricchiuto, CEMRACS, 2012

A 3rd Order Residual-Distribution scheme for Navier-Stokes simulations (Residual-property satisfying formulation)

(A Third Order Residual-Distribution Method for Steady/Unsteady Simulations: Formulation and Benchmarking, including LES, Caraeni, VKI, 2005)

High-order RD scheme for Navier-Stokes equations

High-order RD scheme (cont.) for Navier-Stokes equations



Update scheme for steady/unsteady simulations (Caraeni):

$$U_{i}^{n+1,k+1} = U_{i}^{n+1,k} - \frac{\delta \tau}{V_{\Omega_{i}}} \sum_{T,i\in T} B_{i}^{T} (\Phi_{T}^{c} - \Phi_{T}^{v} + \Phi_{T}^{uns})^{n+1,k}$$

 $B_i^T \leftarrow Upwind matrix residual$ Distribution coefficient (bounded)

$$\sum_{i\in T} B_i^T = I$$

(conservativity)

High-order RD scheme (cont.) for Navier-Stokes equations

Distribution schemes (for preconditioned system):

Low Diffusion A (LDA)

$$B_i^{T,LDA} = K_i^+ (\sum_j K_j^+)^{-1}$$

Lax-Wendroff (LW)

$$\boldsymbol{B}_{i}^{T,LW} = \left[\frac{1}{4}I + \eta \frac{1}{2}K_{i}(\sum_{j} |K_{j}|)^{-1}\right]$$

$$\Phi_T^{\ c} = \sum_1^4 K_i U_i \qquad -$$

$$\begin{aligned} K_{i} &= -\frac{1}{3} F_{j,U} n_{j,i} = \frac{1}{3} R_{i} \lambda_{i} R_{i}^{-1} \\ K_{i}^{+} &= \frac{1}{3} R_{i} \lambda_{i}^{+} R_{i}^{-1} \\ K_{i}^{-} &= \frac{1}{3} R_{i} \lambda_{i}^{-} R_{i}^{-1} \end{aligned}$$

Computes the convective cell residual with second order accuracy (linear data)

High-order RD scheme (cont.)

How to construct a 3rd-order RDS (Ph.D. 2000, LTH):

1. Use (upwind or upwind-biased) uniformly bounded residual-distribution coefficients (linearity/accuracy preserving RD scheme), and apply to total cell-residual

2. Compute the total cell residual (convective + diffusive + unsteady terms) with the required accuracy:

- we used condition-1 + linear solution, second order accurate integration for 2nd order RDS

- we need to use condition-1 + use quadratic reconstruction, 3rd order accurate integration for 3rd order RDS

The idea is to use the same accuracy-preserving RD scheme, as for second order schemes, but compute the total cell residual with 3rd order accuracy.

High-order RD scheme (cont.) Convection residual discretization, 3rd order.

$$Z = \sqrt{\rho}(1, u_1, u_2, u_3, H)$$

Z_{,j} computed with 2nd order accuracy (multi-step algorithm) Use parameter variable Z and assume a quadratic variation over the tetrahedral cell.

Cell-residual in integral form:

$$\overline{Z}^{(mid)} = \frac{\overline{Z}^{i_0} + \overline{Z}^{i_1}}{2} + \frac{(\overline{Z}^{i_0} - \overline{Z}^{i_1})}{8} (\vec{r}^{i_1} - \vec{r}^{i_0})$$

$$p = \frac{\gamma - 1}{\gamma} (Z_0 Z_4 - \frac{Z_1^2 + Z_2^2 + Z_3^2}{2})$$

$$H = c_p T + \frac{u_i^2}{2}$$

$$\Phi_{T}^{c} = \iiint_{T} F_{j}^{c} dv = \iint_{\partial T} F^{c} d\overline{S}$$

$$F^{c} = \begin{cases} Z_{0}Z_{j} \\ Z_{1}Z_{j} + p\delta_{1j} \\ Z_{2}Z_{j} + p\delta_{2j} \\ Z_{3}Z_{j} + p\delta_{3j} \\ Z_{4}Z_{j} \end{cases}$$

High-order RD scheme (cont.) Convection residual discretization, 3rd order.

$$\Phi_{T}^{c} = \iint_{\partial T} F^{c} \cdot \overrightarrow{dS} = \sum_{i=1}^{4} \{ \iint_{face_{i}} (F_{j}^{c} \frac{n_{j,i}}{\|n_{j,i}\|} d\sigma) \}$$

$$\prod_{jace_{i}} [F_{j}^{c} \overline{n_{j,i}}] d\sigma = \begin{cases} \overline{n_{j,i}} \iint_{face_{i}} (Z_{0}Z_{j}) d\sigma \\ \overline{n_{j,i}} \iint_{face_{i}} (Z_{1}Z_{j} + p\delta_{1j}) d\sigma \\ \overline{n_{j,i}} \iint_{face_{i}} (Z_{2}Z_{j} + p\delta_{2j}) d\sigma \\ \overline{n_{j,i}} \iint_{face_{i}} (Z_{3}Z_{j} + p\delta_{3j}) d\sigma \\ \overline{n_{j,i}} \iint_{face_{i}} (Z_{4}Z_{j}) d\sigma \end{cases}$$

 $|[I_{HH}]_{j,k}|$ Pre-computed matrix

High-order RD scheme (cont.) Diffusion residual discretization, 3rd order.

$$\Phi_T^{\nu} = \iiint_T F_{j}^{\nu} d\nu = \oiint_{\partial T} F^{\nu} . \overrightarrow{ds}$$

Assuming a quadratic variation of the Z variables over the cell, the diffusive flux vector integral can be computed over the cell-face.

Use the values of the Z variable and its gradients, defined in the nodes of the high-order FEM tetrahedral-cell.

$$\Phi_T^{\nu} = \bigoplus_{\partial T} F^{\nu} \cdot \overrightarrow{ds} = \sum_{k=1}^4 \overline{F}^{\nu} (face_k) \cdot \overrightarrow{n}_k$$

$$u_{i,\alpha} = \frac{\left[\left(\sqrt{\rho}u_i\right)_{,\alpha} - u_i\left(\sqrt{\rho}\right)_{,\alpha}\right]}{\sqrt{\rho}}$$

High-order RD scheme (cont.) Unsteady residual discretization, 3rd Order.

$$U_{,t} = \frac{3U^{n+1,k} - 4U^n + U^{n-1}}{2.\Delta t}$$

2nd order discretization in time, and 3rd order in space:

$$\Phi_T^{\nu} = \iiint_T U_{,t} \cdot d\nu = \iiint_T \sum_{\alpha=0}^9 Q^{(\alpha)} U_{,t}^{(\alpha)} \cdot d\nu$$

$$\Phi_T^{\nu} = \sum_{\alpha=0}^9 U_{,t}^{(\alpha)} \iiint_T Q^{(\alpha)} . d\nu$$

$$\begin{vmatrix} I_{\alpha} = \iiint_{T} Q^{(\alpha)} . dv; \\ I_{\alpha} = -0.05 V_{T}; \alpha = 0, ..., 3 \\ I_{\alpha} = +0.20 V_{T}; \alpha = 4, ..., 9 \end{vmatrix}$$

High-order RD scheme (cont.)

Monotone shock capturing

1. Shock detection
$$\Psi = \Psi(\frac{h^2 \nabla^2 p}{p_{av}})$$
 or $\Psi = \Psi(\frac{|\nabla V|^2}{|\nabla \times V|^2})$ or $\Psi = \frac{|\Phi^{\Omega}|}{\sum_{j=1}^{\#nodes} |\Phi_j^N|}$

2. Blending between the high-order scheme and a first order positive RD scheme (the N-scheme)

$$\Phi_i^T = (1 - \psi) \cdot \Phi_i^{LDA} + \psi \cdot \Phi_i^N$$

where : $\psi = f(P, \rho, ...)$

= 0 for a smooth flow
 = 1 (discontinuity detected)

Summary of this 3rd order RD algorithm

- Uses a Multi-D Upwind Residual-Distribution scheme
- Formulated for fully unstructured grids (tetrahedrons),
- Compact scheme, highly efficient parallel algorithm.
- Implicit time integration (dual time-stepping algorithm).
- 3rd order accuracy in space (using FEM integration)
- 2nd order time discretization (BDF2 scheme)
- Acceleration techniques: **preconditioning**, pointimplicit relaxation, geometric multi-grid, etc.

Results

- Steady inviscid flows
 - a. Sine-bump channel flow inlet Mach 0.5.
- Steady viscous flows
 - c. Laminar flat-plate boundary layer, Reynolds 2000.
- Unsteady inviscid flows
 - b. Vortex transport by uniform flow Mach 0.04.
- Shock capturing
 - d. Shock vortex interaction.
- Large Eddy Simulation
 LES of turbulent channel flow.

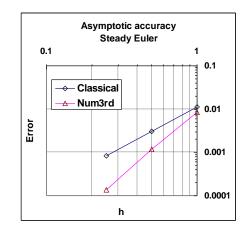
Steady Euler

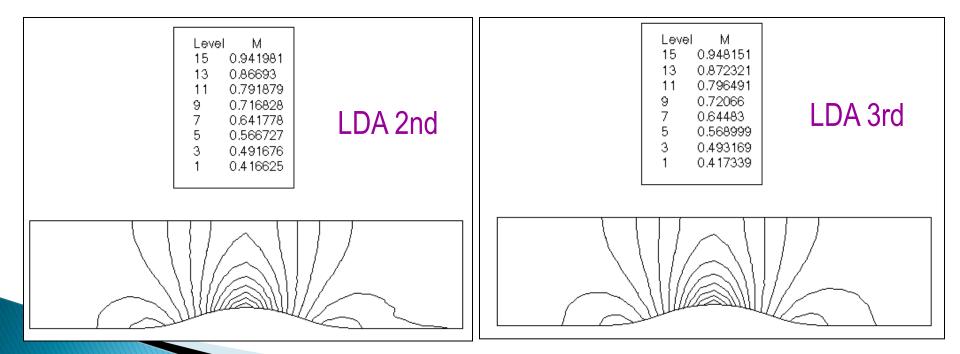
Inviscid sine bump channel flow:

- Inlet Mach number 0.5

Maximum entropy production:

- 2nd order scheme E=2.3 e-4
- 3rd order scheme E=5.1 e-6
- Cell centered FVM(2ndO) E=4.2 e-4



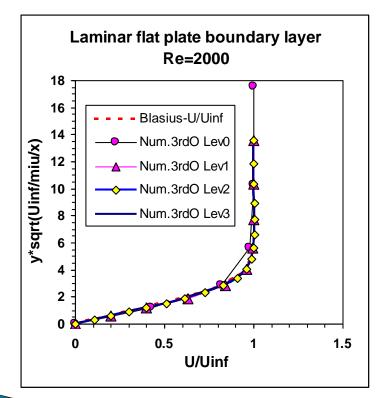


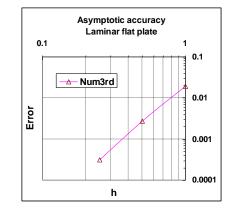
RDS Solution on 32x8 grid

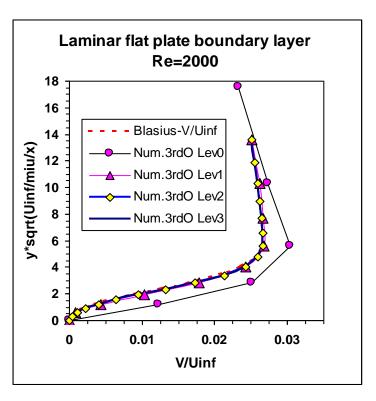
Steady Navier-Stokes

Laminar viscous flow over a flat plate:

- Infinite Mach # 0.5, Re 2000
- Grid0 of 32x18 grid points





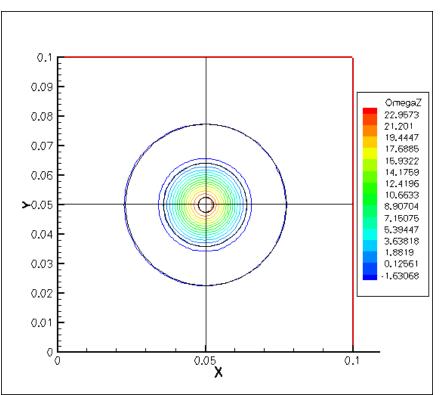


Unsteady Euler

Vortex transport by Inviscid flow.

- Uniform flow Mach = 0.04

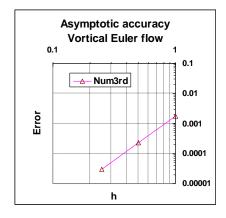
Third order results, grid 64x64

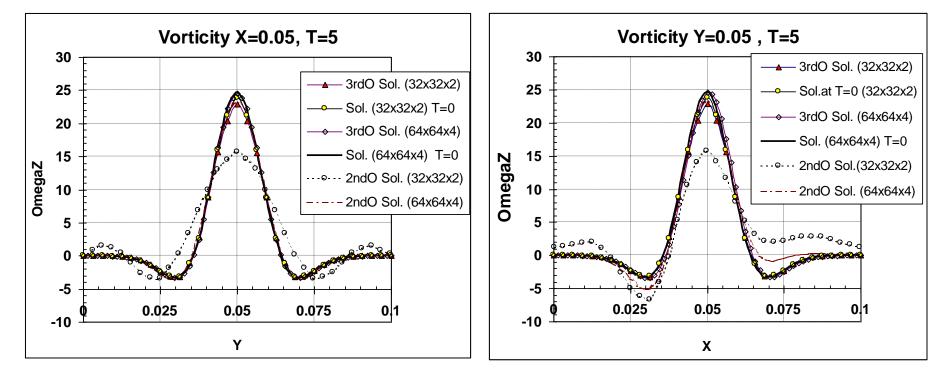


Unsteady Euler (cont.)

Vortex transport by Inviscid flow.

- Uniform flow Mach = 0.04

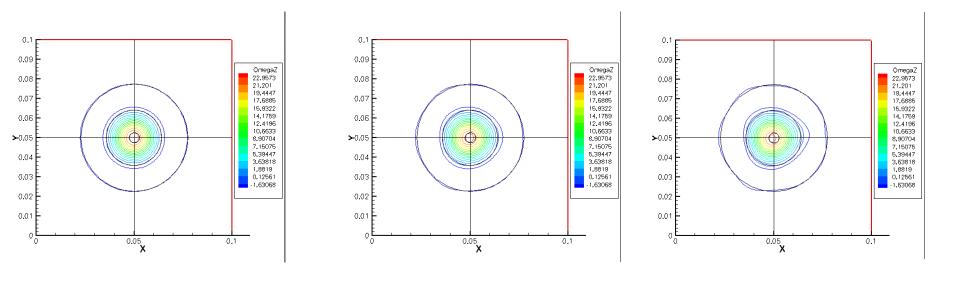




Unsteady Euler (cont.)

Vortex transport by Inviscid flow. - Uniform flow Mach = 0.04

Third order results, grid 64x64

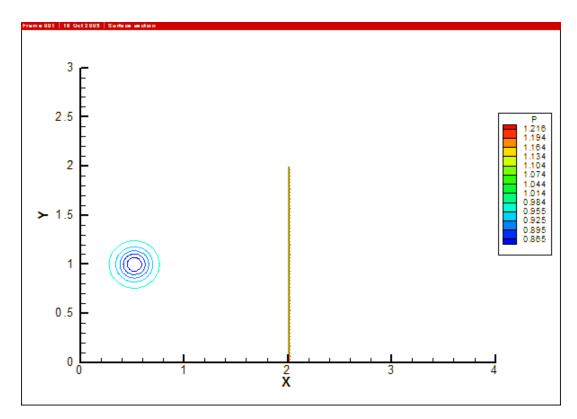


T=0

T = 12 periods

T = 24 periods

Shock vortex interaction

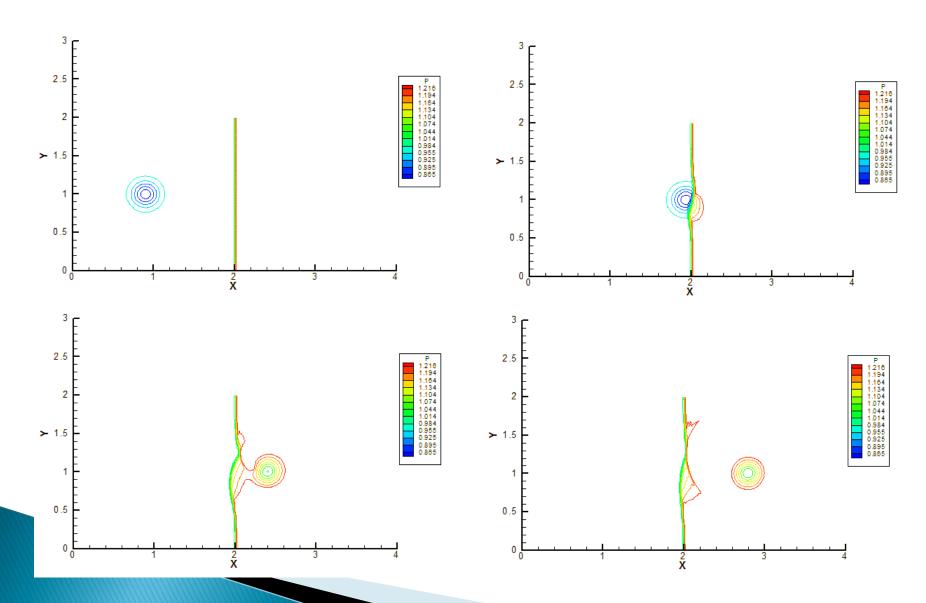


Shock-vortex interaction:

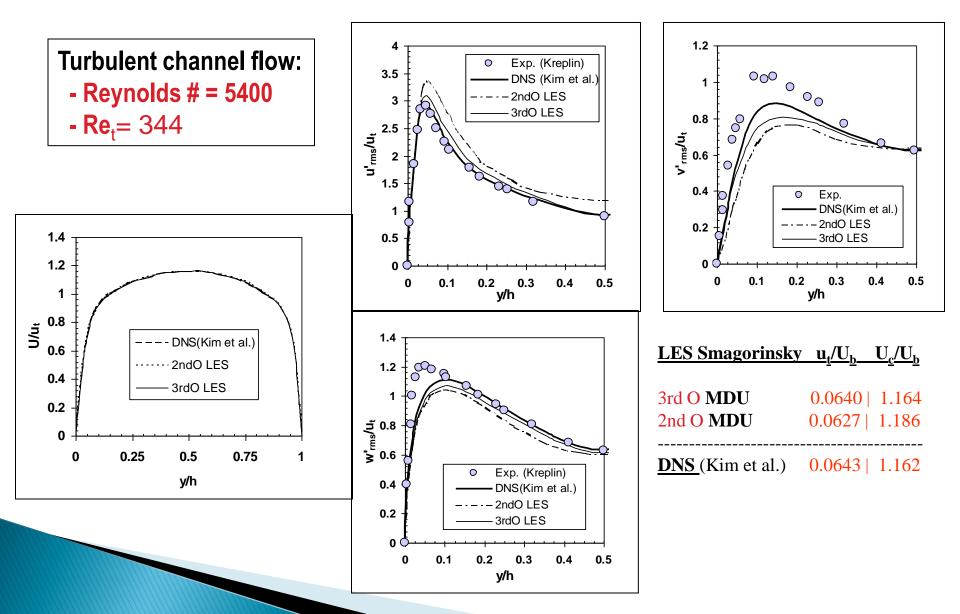
- Steady shock in mid channel
- Vortex moves from left to right

Note: vortex preserving strength, before and after crossing shock

Shock vortex interaction



LES of turbulent channel flow



Multidimensional Residual-Distribution Solving for flow and "optimal" mesh

(Grids and solutions from Residual Minimization, Nishikawa, Rad, Roe, 2001)

Solving for flow and solution using RDS

Main ideas:

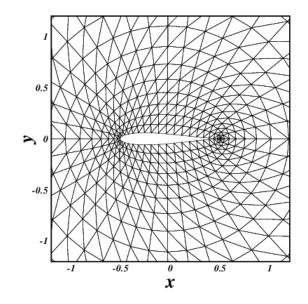
- Use multidimensional RDS to compute solution at vertices,
- There are 5-6 times less vertices than cells in the tetrahedralcells mesh …
- Use the extra "conditions" (cell-residual must be driven to zero) to define mesh motion equations, using an LSQ approach,
- Algorithm computes an improved solution on a "optimized" mesh, which minimizes the overall error in a specific norm.

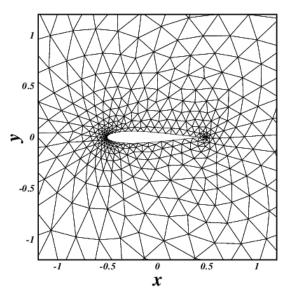
(Nishikawa, 2001)

Solving for flow and solution using RDS

Flow over Joukowsky airfoil (known theoretical solution)

(Nishikawa, 2001)



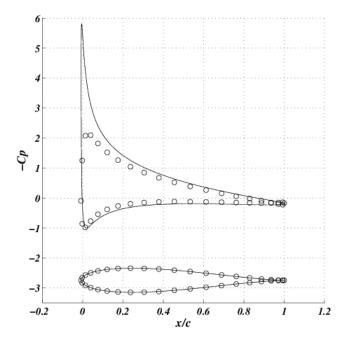


Original mesh

Adapted mesh

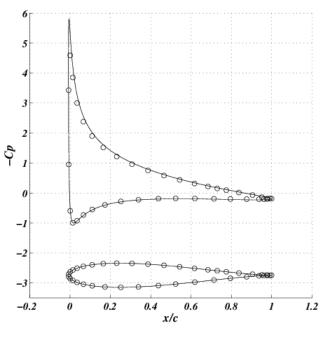
Solving for flow and solution using RDS

Flow over Joukowsky airfoil (known theoretical solution)



Original mesh solution Cp, o

(Nishikawa, 2001)



Adapted mesh Cp, o

Comparison with theoretical solution ----

Why using Multi-D Residual-Distribution schemes ?

- Resolves better real complex multidimensional physics (!)
- It is much more accurate that 2nd order Finite Volume method,
- It is capable of handling complex geometry (formulated tetrahedrons),
- Has a compact stencil algorithm, at every step (which leads to very efficient parallelization),
- It is relatively to easy to extend to high order accuracy (at least from 2nd to 3rd order), and 3rd order results are significantly more accurate,
- Can be used to solve for flow and node location using the combined RDS/LSQ approach - for an optimal solution, on a given mesh topology.

Backup slides

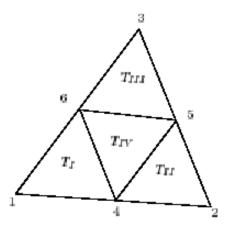
High-order Residual Distribution Scheme for Scalar Transport Equations on Triangular Meshes

From "High-order fluctuations schemes on triangular meshes" R.Abgrall and Phil Roe, 2002

$$u_{\sigma}^{n+1} = u_{\sigma}^n - \frac{\Delta t}{|C_{\sigma}'|} \sum_{T,\sigma \in T} \Psi_{\sigma}^T$$

$$\Psi^T_{\sigma} = \sum_{T'_T \subset T, \sigma \in T'_T} \Phi^{T'_T}_{\sigma}$$

 $\beta_j = \frac{\phi_j^M}{\phi}, \qquad \hat{\beta}_j = \frac{\phi_j^H}{\phi^H}$



 $\sum_{T_T'\subset T, \sigma\in T} \Phi_{\sigma}^{T_T'} = \int_T {\rm div}\ f^h(u^h) dx.$

$$\sum_{j=1}^{N} \beta_j = \sum_{j=1}^{N} \hat{\beta}_j = 1$$
$$\beta_j \hat{\beta}_j \ge 0$$
$$\hat{\beta}_j \text{ is bounded}$$

Conservation

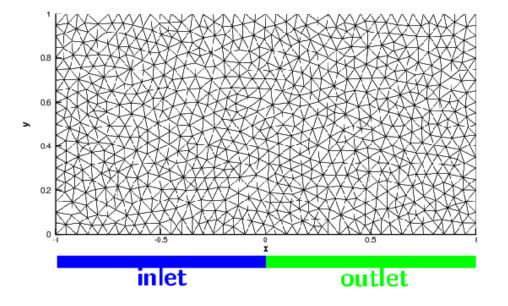
Monotonicity High-order accuracy

 $\hat{\beta}_j = \frac{\beta_j^+}{\sum \beta_j^+}$

 $\Phi^{H} = 2\Phi^{IV} + \frac{2}{3}(\Phi^{I} + \Phi^{II} + \Phi^{III})$

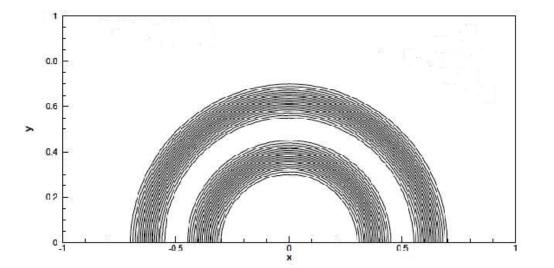
Scalar example : $\vec{a} \cdot \nabla u = 0$ with $\vec{a} = (y, 1 - x)$ and bcs

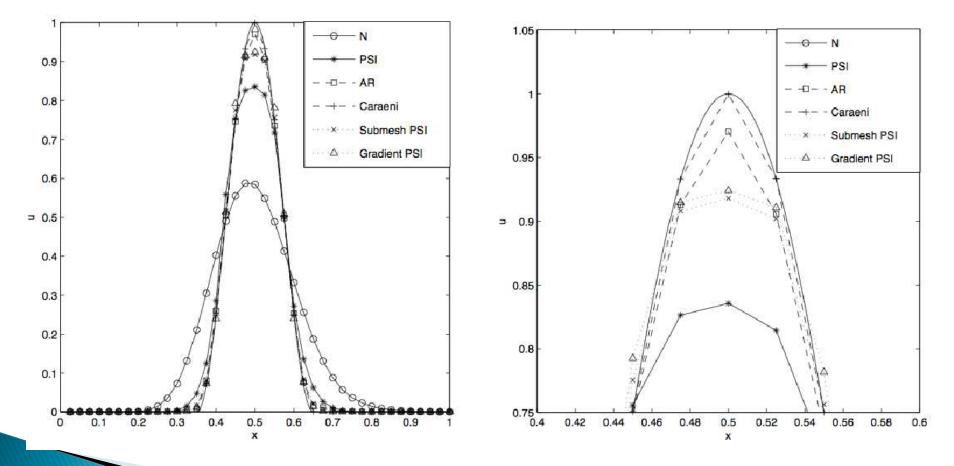
$$u_{\rm in} = \begin{cases} \cos(2\pi(x+0.5))^2 & \text{if } x \in [-0.75, -0.25] \\ 0 & \text{otherwise} \end{cases}$$



Scalar example : $\vec{a} \cdot \nabla u = 0$ with $\vec{a} = (y, 1 - x)$ and bcs

$$u_{\rm in} = \begin{cases} \cos(2\pi(x+0.5))^2 & \text{if } x \in [-0.75, -0.25] \\ 0 & \text{otherwise} \end{cases}$$



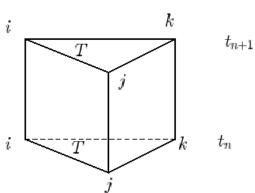


Space-time Residual Distribution schemes for unsteady simulations

"Status of Multidimensional Residual Distribution Schemes and Applications in Aeronautics", Deconinck et al. AIAA 2000-2328.

"Construction of 2nd order monotone and stable residual distribution schemes: the unsteady case", Abgrall et al. VKI 2002

$$\begin{aligned}
u^{h}(x,t) &= u^{n}(x)\frac{t_{n+1}-t}{\Delta t} + u^{n+1}(x)\frac{t-t_{n}}{\Delta t} \longrightarrow \qquad \Phi_{x,t} = \int_{\Omega} \int_{t_{n}}^{t_{n+1}} \left(\frac{\partial u^{h}}{\partial t} + A_{i}\frac{\partial u}{\partial x_{i}}\right) dx.dt \\
\Phi_{x,t} &= \sum_{i \in \Omega} \Phi_{i}^{-t} + \Phi^{s} \\
\Phi_{i}^{-t} &= \frac{\Omega}{3}(u_{i}^{-n+1}-u_{i}^{-n}) \\
\Phi_{i,n+1}^{-t} &= \frac{V_{\Omega}}{3}(u_{i}^{-n+1}-u_{i}^{-n}) + \frac{\Delta t}{2}K_{i}^{+}(u_{i}^{-n+1}-u_{i}^{-n+1}) \\
\Phi_{i,n+1}^{-t} &= \frac{V_{\Omega}}{3}(u_{i}^{-n+1}-u_{i}^{-n}) + \frac{\Delta t}{2}K_{i}^{+}(u_{i}^{-n+1}-u_{i}^{-n+1}) \\
+ \frac{\Delta t}{2}K_{i}^{+}(u_{i}^{-n}-u_{i}^{-n})
\end{aligned}$$



$$\overline{u}^{n+1} = \left(\sum_{i \subset \Omega} K_i^{-1}\right)^{-1} \sum_{i} K_j^{-1} u_j^{n+1}$$
$$\overline{u}^n = \left(\sum_{i \subset \Omega} K_i^{-1}\right)^{-1} \sum_{i} K_j^{-1} u_j^{-1}$$

LDA space-time scheme:

LDA+N space-time scheme:

$$\Phi_{i,n}^{LDA} = 0$$

$$\Phi_{i,n+1}^{LDA} = (\beta_i + \frac{1}{6})\Phi_i^t + (\beta_i - \frac{1}{12})\sum_{j \neq i} \Phi_j^t + \beta_i \Phi^s$$

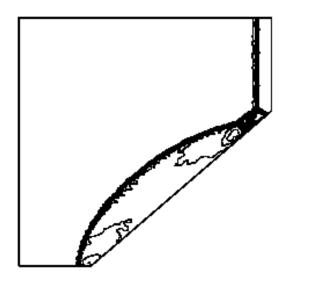
$$\Phi_{i,n}^{B} = 0$$

$$\Phi_{i,n+1}^{B} = l\Phi_{i,n+1}^{N} + (1-l)\Phi_{i,n+1}^{LDA}$$

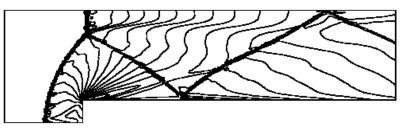
$$l = \frac{|\Phi_{x,t}|}{\sum_{j} |\Phi_{i,n+1}^{N}|}$$

$$\beta_i = \boldsymbol{K}_i^+ (\sum_j \boldsymbol{K}_j^+)^{-1}$$

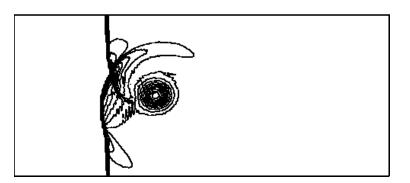
"Status of Multidimensional Residual Distribution Schemes and Applications in Aeronautics" Deconinck et al. 2000



Reflection of a planar shock from a ramp (density plot)



Shock reflection on a forward facing step (density plot)



Shock-vortex interaction

From "Construction of 2nd order monotone and stable residual distribution schemes: the unsteady case", Abgrall et al. 2002

