Hyperbolize it.

Hiro Nishikawa

Future Directions in CFD Research, August 6-8, 2012 Hampton Roads Convention Center

Sushi is Diffusion

A harmony of rice and topping: rice crumbles and dissolves with topping in your mouth. - Tasty diffusion

http://www.hanayuubou.com/

Years of training required to make such good sushi. Know-how is in experts' hands.

The same for diffusion schemes, but the development is still in early stage.

Lack of Guiding Principle

Guiding Principles

Upwind for advection - hyperbolic A variety of schemes generated:

Flux-Vector/Difference Splitting Multidimensional upwind - RD, FS schemes Riemann Solvers, CUSP, AUFS, AUSM, LDFSS, HLL, Steger-Warming, SUPG, etc.

Isotropic for diffusion - parabolic ?

Not that successful, especially for unstructured and high-order. What can be a useful guiding principle for diffusion?

Behold, we already have it.

Algorithm Research Continues

$$\mathbf{U}_t + \mathbf{A}\mathbf{U}_x = \mathbf{B}\mathbf{U}_{xx} + \mathbf{C}\mathbf{U}_{xxx} + \dots + \mathbf{S}$$

Hyperbolic Pa

Parabolic

Dispersion

Source

AlgorithmWell developedNo so wellNot so wellTricky

Really? It is already well developed for all terms if we ...

Hyperbolize Them

First-Order Hyperbolic System Method JCP2007, 2010, 2012, AIAA2009, 2010, 2011, 2013, CF2011

$$\mathbf{U}_{t} + \mathbf{A}\mathbf{U}_{x} = \mathbf{B}\mathbf{U}_{xx} + \mathbf{C}\mathbf{U}_{xxx} + \dots + \mathbf{S}$$

$$\downarrow$$

$$\tilde{\mathbf{W}}_{t}$$

$$\tilde{\mathbf{W}}_{t} + \tilde{\mathbf{A}}\tilde{\mathbf{W}}_{x} = 0$$

Dramatic simplification/improvements to numerical methods

Methods for hyperbolic system applicable to all terms

Turn Every Food into a Burger!

Simple, Efficient, Accurate.

It looks eccentric, but the taste is the same, or even better!

Hyperbolic Diffusion System

 $u_t = \nu p_x$ $p_t = (u_x - p)/T_r$

This is hyperbolic, describing a symmetric wave:

Equivalent to diffusion eq. in the steady state for any Tr. \longrightarrow Tr is a free parameter.

Hyperbolic Diffusion Scheme

Same order of accuracy for solution and gradient.

Traditional Diffusion Scheme

Scalar diffusion scheme can be derived from hyperbolic scheme.

Traditional Diffusion Scheme:

Simply ignore the second equation in hyperbolic scheme, and reconstruct the gradients.

$$\begin{aligned} \frac{du_j}{dt} &= -\frac{1}{h} \left[f_{j+1/2} - f_{j-1/2} \right] \\ f_{j+1/2} &= \frac{1}{2} \left[\nu(u_x)_j + \nu(u_x)_{j+1} \right] + \frac{\nu\alpha}{2h} \left(u_R - u_L \right) \\ \text{Consistent} & \text{Damping (from dissipation)} \end{aligned}$$

High-frequency damping term is introduced automatically. It is essential for accuracy and robustness. See AIAA2010, CF2011

For every advection scheme, there is a corresponding diffusion scheme.

Damping is Essential

Highly-skewed unstructured grid (unsteady diffusion problem)

Damping term is critical for unstructured computations

See AIAA2010, CF2011, for many examples.

Three Paths to Take

Hyperbolic Model for Diffusion

It all starts from the discretization of the hyperbolic model.

Navier-Stokes Results

The idea extended to nonlinear system.

Hyperbolize to the Future

Construct a hyperbolic system and discretize it:

$$\tilde{\mathbf{W}}_t + \tilde{\mathbf{A}}\tilde{\mathbf{W}}_x = 0$$

Hitherto unexpected advantages being discovered:

Higher order accuracy for viscous/heat fluxes Orders of magnitude faster viscous computation by O(h) time step Compact stencil for high-order derivatives High-order advection schemes for diffusion Boundary conditions made simple (all Dirichlet; local characteristics) A greater variety of viscous discretizations Damping term incorporated automatically into viscous schemes

Large eccentricity leads to a hyperbolic trajectory, which enables us to escape towards the future.