
What is a flux?
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Finite Volume methods (and others)

(are based on ensuring conservation by computing the flux
through the surfaces of a polyhedral box. Either the normal
component of the flux is evaluated at the center of the
face, or at the collocation points of some quadrature rule.

Consider however the solution of the two-dimensional
acoustic equation (successor to the ICASE equation?)

∂tp +∇ · u = 0
∂tu +∇p = 0

An important property of the exact solution is that
∂t∇× u = 0. However, vorticity arises from truncation error
in almost all finite-volume schemes.
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Spurious vorticity is generated numerically
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Here u, v are velocities in the cells, and
are updated by pressures (fluxes) p that
have been computed on the vertical
faces, and q on the horizontal faces

δtu = δxp, δtv = δyq

The vorticity evaluated at a vertex as ω = µyδxv − µxδyu will
change by

δtω = µyδxδtv − µxδyδtu = µyδxδyq − µxδyδxp

= δxδy (µyq − µxp)

so that vorticity is preserved only if µyq = µxp, implying
that

p = µys, q = µxs

for some vertex flux s. Morton and Roe (SISC, 2001)
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Face-based fluxes cannot preserve vorticity

q

q

pp u,v

ss

ss

unless they are derived from vertex
fluxes. These arguments were con-
firmed and extended by Mishra and
Tadmor (SINUM 2011).

The experiments show patterns of
vorticity in the initial data being dis-
rupted by acoustic waves when using
the standard MUSCL scheme, but pre-
served by a scheme based on corner
fluxes.
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Calculating a vertex flux involves averaging

in the transverse direction. If the face flux for a
conventional second order scheme reads

f = µf− 1
2 Qδu

the formula for a vertex flux reads

f = µxµy f− 1
2 {Qxµyδxu + Qyµxδyu}

The averaging operators serve
to enhance the accuracy of
Lax-Wendroff type schemes,
particularly for waves not
travelling in the grid
directions. (Morton and Roe,
2001)
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For the acoustic equations

the dissipative terms are physically meaningful

f =

 u
v
p

 =

 µxµyu − 1
2 Qµyδxp

µxµyv − 1
2 Qµxδxp

µxµyp − 1
2 Q(µyδxu + µxδyv)

 (1)

where Q = 1.0 gives an upwind scheme, and Q = ν gives
Lax-Wendroff. The pressure gradient and the divergence
are the drivers of change. These drivers need to be
subjected to some nonlinear mechanism that avoids
oscillations. The key is to select an appropriate value of Q.
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Flux-corrected Transport (FCT)

provides an alternative to MUSCL-type schemes. It is
widely regarded as a blunt instrument in comparison, but
can be implemented in more sophisticated ways than it
has been. The main idea is to represent all fluxes as the
average of a high-order and a low-order term.

f = αfHO + (1− α)fLO

Begin by computing a low-order solution u∗. In cells
containing a local extremum, it is acceptable to proceed
with a high-order correction, but for other cells the
correction is limited;

f = fLO + α(fHO − fLO)

where α is chosen to avoid an extremum in any
neighboring cell.
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Potential advantages of FCT are

that it is not based on one-dimensional physics and can be
applied to invariant quantities like divergence and vorticity

These are new possibilities that have not been exploited.
The monotonicity constraints that have been used in the
past have been rather blunt instruments, which has led to
FCT having a poor reputation in aerospace circles.
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Is operator splitting OK?

Operator splitting is another idea with a bad reputation.
Even if the individual operators were to be solved perfectly,
there a splitting error unless the operators commute.
The splitting into advection terms and acoustic terms has
no such error (at the linear level)

∂t

 ρ
ρ~v
E

 = div

 ρ~v
ρ~v ⊗ ~v

E~v

 + div

 0
Ip
p~v


un+1 = (advection (∆t/2)) (Acoustic (∆t)) (advection(∆t/2))un

Only the advection operator needs to be upwinded. Both
operators require limiting.
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Geometrical Shock Dynamics (Whitham, 1957)

is a semiempiriical method for computing the evolution of a
shock surface moving into a uniform (or stationary) flow. Lines
that are everywhere normal to the shock are called rays. and
bundles of them are raytubes. The speed of the shock normal
to itself is a function of the area of the raytube. The distance
between two points lying on the shock at different times is
dx = mdt + gdξ, where g = ∂ξx,m = ∂tx
There is a geometric conservation
law

∂tg + ∂ξm = 0

closed by a relationship
m/m0 = fn(g/g0) t
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The Riemann problem in two dimensions

has data comprising two consecutive segments gL,gR of
the shock front. The solution is m, the speed and direction
of the ray emanating from their juncture.

m

(g ,m)

(g
 ,
m)

m = 1
2 (mL + mR)− 1

2λ(gR − gL)

where λ =
√

m(g)m′(g)
g is the speed with which disturbances

travel along the front. When all of the ray segments m∆t
are in place, the new shock segments are defined.
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Geometrical shock dynamics in three dimensions
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is based on a distance

dx = m dt + g1 dξ + g2 dη

and a GCL (floor + ceiling + sum of sides =0)

∂t (g1 × g2) + ∂ξ(m× g1) + ∂η(m× g2) = 0

together with a closure

m/m0 = fn((g1 × g2)/g0)
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Following classical procedure

we consider pairs of shock patches and solve the 1D
Riemann problem at their common edge. The output from
this is the vector normal to the ‘wall’ based on that edge.
The walls erected around one vertex do not meet in a line,
but each wall could be twisted by an arbitrary amount. In
order to force them all into alignment we require three
constraints per vertex.

Since we have only one de-
gree of freedom per side the
discrepancies cannot be recon-
ciled. This difficulty is cur-
rently encountered when intro-
ducing Riemann solvers into La-
grangian methods
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Solving two-dimensional Riemann problems
instead

results in a unique vector m leaving each vertex
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Again, use of the vertex flux has allowed a
multidimensional constaint (closure of the patch) to be
met.
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