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Introduction 
 

• Efficiency is a challenge with increasing 
        Problem Size 

        Flow Complexities 

• Improvements in computational efficiency 
        Multigrid 

        Local Time Stepping 

        Implicit Residual Smoothing 

 Explicit time marching Runge-Kutta scheme 

 Space centered or upwind schemes 



RK/implicit smoother scheme 
 

RK/Implicit smoother scheme 
finite volume + source terms 

Extension to turbulent flow 

Extension to chemical reactions 

Time dependent - dual time step 



Navier-Stokes Equations 
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N-S equations in conservative form: 
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• F , G and H are the inviscid fluxes 
• Fv , Gv and Hv are the viscous fluxes 

The Navier-Stokes (N-S) equations for the conservative 
variables:  



k-ω SST Turbulent model 

  

• In turbulent flow, the viscosity is the sum of the laminar 

 and the turbulent viscosity 

• In addition to N-S equation we solve the k-ω SST 

 turbulence model equations -  
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The turbulent viscosity μt is given by  

 k and ω are the model variables, 

 S is the magnitude of the vorticity, 

 F1,2 are dump functions,  

 ν, νT are the laminar and turbulent viscosity parameters 
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     Real gas equation of state 
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The equation of state is  

with the mean molecular weight  



Chemical reactions source terms 
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The source term vector, S, describes the rate of change of species k: 
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where ωk and wk are the molar concentration and molecular weight of 
the species. νik are the stochiometric coefficients of the species k in the 
reaction i. qi are the rate of progress variables given by - 
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qf,i and qr,i are defined by: 
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The forward reaction rate kf and the reverse rate kr are 
empirically known functions of the temperature. 
  
The forward constant is given by an Arrhenius expression of 
the type: 
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 Ai, βi and Ei are the Arrhenius constants: 
 Ai is the rate constant 
 βi is the temperature exponent 
 Ei is the activation energy.  

The source term for the temperature is  
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RK/Standard Scheme: Three Components

• The 3 components are: RK scheme, implicit residual smoothing, multigrid

• The qth stage of the RK component can be written as

W(q) = W(0) − α1∆tR(W(q−1))

where R is the vector residual function, ∆t is the time step, and the

RK coefficients αq are [0.25, 0.1667, 0.375, 0.5, 1.0].

The residual function R is given by

R = R(W(q)) =
1

V



LcW(q) +
q∑

r=0
γqr LvW(r) +

q∑

r=0
γqr LdW

(r)



 ,

with the operators Lc, Lv, and Ld for convection, viscous diffusion

and numerical dissipation.



RK/Implicit Scheme

• The change in the solution on the qth stage

δW(q) = W(q) −W(0) = −αq
∆t

V
LW(q−1) = R̂(W(q−1)),

L is the complete difference operator.
• If we apply implicit residual smoothing, then

Li δW = δW(q),

where Li is an implicit operator.
• Approximately inverting the implicit operator Li

δW = −αq
∆t

V
P LW(q−1),

P is a preconditioner defined by the approximate inverse L̃−1
i .



Transforming the equations to primitive variables, the 
flux Jacobian is written as: 
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Finally, the implicit smoothing scheme is given by: 
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Figure 1: Fourier footprints of RK(3,3) scheme with two preconditioners for all modes with high-frequency
components (64× 64, M = 0.5, α = 0◦, CFL = 103, AR = 5, Re = ∞). (a) Without entropy fix, (b) with
entropy fix.
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Figure 2: Effect of dissipation weights on damping behavior of RKI(3, 3) scheme (64×64, M = 0.5, α = 45◦,
CFL = 103, AR = 1, Re =∞, 2 SGS). (a) wgts: [1, 1, 1], (b) wgts: [1, 0.5, 0.5].
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Figure 3: Damping behavior of RKI(3, 3) scheme with variation in Re and AR (64× 64, M = 0.5, α = 45◦,
2 SGS). (a) Re = 102, AR = 10, CFL = 103, (b) Re = 106, AR = 103, CFL = 104.



Extension to turbulent flow 
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We solve two sets of equations for  the smoothed residuals 
independently:  

a) For the Eulerian primitive variables 

b) For the turbulent model variables – k and ω 

In the k- ω set we use the Jacobian of the source term: 



Extension to chemical reactions 

For a real gas, we insert part  of  the entries of the Jacobian 
source terms into the system for the Eulerian variables’ residuals. 
For the {ω,T, u} primitive variables, the Jacobian matrix we use is  
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 For {ρ, P, u} variables this matrix becomes  
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Determination of temperature from 
internal energy 

For a given internal energy e0, we want to determine the temperature.  
We solve the equation f(T) = e(T) – e0 = 0 iteratively using the    
Newton-Rapson method  
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Time dependent - Dual time step 
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For steady state calculations we use pseudo time approach. For 
time dependent calculations, in order to be able to use all of the 
acceleration methods we use a dual time step. An approximation 
to the physical time derivative now appears as a source term in 
the right hand side of the N-S equations. 
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t is the physical time and τ is the pseudo time. We approximate 
the physical time derivative using a backward difference scheme. 
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Since we do not know Qn+1 we approximate it with Qk+1 

After some rearrangement of the above equation we have  
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Preliminary results 



Convergence Histories for Three-Stage Schemes
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Figure 4: Rocket Motor (a) full range of Mach contours in the chamber and nozzle (b) zoom on the Mach
values inside the motor where the sound speed is around 1000 m/s and the Mach values are low.
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Figure 5: Convergence rate for rocket motor for original and improved schemes
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Inviscid computations on a ONERA M6  
with a tetrahedral mesh 

 
 
 

Geometry: ONERA M6 
 Flow conditions:   

           M = 0.8395 
 Re = 11,720,000 
   = 3.06° 

 inviscid 



Mesh 

 

 
 

 

 Euler mesh 
 Made of 611,856 tetrahedral cells 
 Generated using Gmsh 

 
 
 

 



Mesh 

 

 
 

 
 

 

 
 
 
 

 
 



5 

 

 

 

 

 
 

Code performances: Lift and Drag 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Decay of density residual for solvers with/without 
convergence acceleration
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Code performances: Lift and Drag 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Evolution of lift and drag 
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Code performances: Lift and Drag 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Distribution of pressure coefficient on the wing surface, with 

Mach iso-countours at different spanwise locations 



Convergence History for Various CFL Numbers 
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Different CFL # are used for 
the N-S eqs. and the turb. Eqs. 

 N-S CFL = 1x105; Turb. CFL = 2x104 

 N-S CFL = 1000; Turb. CFL = 1000 

 N-S CFL = 100; Turb. CFL = 100 



Laminar reactive flow – 
 Rapid expansion diffuser 



Contours maps for the temperature (A), Mach number (B), H2O 
mass fraction (C) and OH radical (D)  

A B 

C D 



Convergence history for CFL 20 without multigrid acceleration 



Turbulent reactive flow – rocket 
motor plume 

A rocket motor plume exiting from the 
motor nozzle into a low Mach number free 
stream flow is calculated. The plume 
boundary conditions are defined on the 
nozzle throat where the flow velocity is 
sonic and the species mass fractions are 
defined. The species used for this problem 
are: H, O, OH, H2, O2, CO, CO2, H2O, 
HCL and N2. 



Convergence history: The fluid CFL is 100,000 and 
turbulent CFL is 200  

 Total density  

 Turbulent parameter ω  



Turbulent kinetic energy 

Temperature 



CO2 mass fraction (A) and OH radical (B) 

A 

B 
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For CFL=100,                  we need on the average 5-10 
subiterations per physical time step. For CFL=1000 this rises 
to 6-11 subiterations per physical time step with a total CPU 
increase of about 20-30%.  
For CFL=100,                we typically need 7-15 subiterations 
while for CFL=1000 we need 8-17 subiterations. 
 
In summary: the preconditioned dual time step code needs 
only about 10% of the CPU of the original code. 
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Conclusions  

 

 centered, upwind schemes 

 structured, unstructured grids 

 large time step for 2 equation 
turbulence model 

 faster convergence chemical reactions 

 faster convergence in subiterations of 
dual time step 

 more robust solutions 

 



 
  Other turbulence models 
  Multigrid in turbulence  equations 
  LES 
•  Higher Order accurate schemes  
    (DGS, Spectral Volume/Difference, WENO) 
•  Non RK algorithms (ADI,GS,Krylov) 
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