
Rapid Convergence using
Implicit Smoothing with

Runge-Kutta Schemes for
Navier-Stokes

CFD Futures Conference

NIA, Hampton, VA
August 6-8, 2012

 Eli Turkel

Introduction

• Efficiency is a challenge with increasing
 Problem Size

 Flow Complexities

• Improvements in computational efficiency
 Multigrid

 Local Time Stepping

 Implicit Residual Smoothing

 Explicit time marching Runge-Kutta scheme

 Space centered or upwind schemes

RK/implicit smoother scheme

RK/Implicit smoother scheme
finite volume + source terms

Extension to turbulent flow

Extension to chemical reactions

Time dependent - dual time step

Navier-Stokes Equations

 Tn ewvuQ  ... 21

N-S equations in conservative form:

S
z

HH

y

GG

x

FF

t

Q
VVV 


















)()()(

• F , G and H are the inviscid fluxes
• Fv , Gv and Hv are the viscous fluxes

The Navier-Stokes (N-S) equations for the conservative
variables:

k-ω SST Turbulent model

• In turbulent flow, the viscosity is the sum of the laminar

 and the turbulent viscosity

• In addition to N-S equation we solve the k-ω SST

 turbulence model equations -

 

   
jjj

T

j

j

Tk

j

k

xx

k
F

xx
Su

t

x

k

x
kPku

t

k












































































1
12

21

22

*





()
1

1 2max ,t T
a k

a SF
ρµ ρν
ω

= =

The turbulent viscosity μt is given by

 k and ω are the model variables,

 S is the magnitude of the vorticity,

 F1,2 are dump functions,

 ν, νT are the laminar and turbulent viscosity parameters

10

 Real gas equation of state





n

i

iRT
W

RT
P

1







 
n

i i

i

w
W

1

1 1





The equation of state is

with the mean molecular weight

Chemical reactions source terms

EC

CBA

f

r

f

r

k

k

k

k

,2

,2

,1

,1

2 



The source term vector, S, describes the rate of change of species k:

N 1,2,...,k
dt

d

reactions alli

k  


iikkkkk qw 


 

where ωk and wk are the molar concentration and molecular weight of
the species. νik are the stochiometric coefficients of the species k in the
reaction i. qi are the rate of progress variables given by -

irifi qqq ,, 


spiecesk

kifif

kikq
'

,,

 
spiecesk

kirir
kikq
''

,,



qf,i and qr,i are defined by:

;

The forward reaction rate kf and the reverse rate kr are
empirically known functions of the temperature.

The forward constant is given by an Arrhenius expression of
the type:

RTE
iif

ii eTAk /
,

−= β

 Ai, βi and Ei are the Arrhenius constants:
 Ai is the rate constant
 βi is the temperature exponent
 Ei is the activation energy.

The source term for the temperature is

∑−=
k

kk
v

h
c

T ρ
ρ





1

∑






= ∈ iKk

ik

RT
PKk atm

pir

υ

, 





 ∆

−
∆

=
RT

H
R
SK p exp

RK/Standard Scheme: Three Components

• The 3 components are: RK scheme, implicit residual smoothing, multigrid

• The qth stage of the RK component can be written as

W(q) = W(0) − α1∆tR(W(q−1))

where R is the vector residual function, ∆t is the time step, and the

RK coefficients αq are [0.25, 0.1667, 0.375, 0.5, 1.0].

The residual function R is given by

R = R(W(q)) =
1

V



LcW(q) +
q∑

r=0
γqr LvW(r) +

q∑

r=0
γqr LdW

(r)



 ,

with the operators Lc, Lv, and Ld for convection, viscous diffusion

and numerical dissipation.

RK/Implicit Scheme

• The change in the solution on the qth stage

δW(q) = W(q) −W(0) = −αq
∆t

V
LW(q−1) = R̂(W(q−1)),

L is the complete difference operator.
• If we apply implicit residual smoothing, then

Li δW = δW(q),

where Li is an implicit operator.
• Approximately inverting the implicit operator Li

δW = −αq
∆t

V
P LW(q−1),

P is a preconditioner defined by the approximate inverse L̃−1
i .

Transforming the equations to primitive variables, the
flux Jacobian is written as:

  AAA
where

 AAA 

2

1

local
all faces

NB
all faces

t S
I A ndS t Q

V Q

t
Q A Q ndS

V









  
       


   





Finally, the implicit smoothing scheme is given by:

Re

Im

-10 -8 -6 -4 -2 0
-3

-2

-1

0

1

2

3
wgts: [1 1 1]

wgts: [1 .5 .5]

(a)

Re

Im

-10 -8 -6 -4 -2 0
-3

-2

-1

0

1

2

3
wgts: [1 1 1]

wgts: [1 .5 .5]

(b)

Figure 1: Fourier footprints of RK(3,3) scheme with two preconditioners for all modes with high-frequency
components (64× 64, M = 0.5, α = 0◦, CFL = 103, AR = 5, Re = ∞). (a) Without entropy fix, (b) with
entropy fix.

0.35 0.250.2

0.1

0.35

0.
3

0.
4

0.150.15
0.

1

0.1

0.
35 0.25

0.
1

0.2

0.2

0.
35

0.
2

0.
4

0.
6

0.
8

0.8

θx

θ y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(a)

0.
2

0.2 0.2
0.250.2

5

0.20.15

0.150.2

0.
6

0.
8

0.8

0.
4

θx

θ y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(b)

Figure 2: Effect of dissipation weights on damping behavior of RKI(3, 3) scheme (64×64, M = 0.5, α = 45◦,
CFL = 103, AR = 1, Re =∞, 2 SGS). (a) wgts: [1, 1, 1], (b) wgts: [1, 0.5, 0.5].

0.25
0.2

0.15

0.25

0.2
0.25

0.9
0.15

0.4

θx

θ y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(a)

0.2

0.2

0.2

0.2

0.15

0.15

0.250.35 0.9

θx

θ y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(b)

Figure 3: Damping behavior of RKI(3, 3) scheme with variation in Re and AR (64× 64, M = 0.5, α = 45◦,
2 SGS). (a) Re = 102, AR = 10, CFL = 103, (b) Re = 106, AR = 103, CFL = 104.

Extension to turbulent flow




















~

~
~ k
Q
























20

** k

Q

S

We solve two sets of equations for the smoothed residuals
independently:

a) For the Eulerian primitive variables

b) For the turbulent model variables – k and ω

In the k- ω set we use the Jacobian of the source term:

Extension to chemical reactions

For a real gas, we insert part of the entries of the Jacobian
source terms into the system for the Eulerian variables’ residuals.
For the {ω,T, u} primitive variables, the Jacobian matrix we use is

{ }































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

T
T

T

T

T

uTRJ









0000

00000

000

000

000

,,
3

3

3

2

2

2

1

1

1

ω
ω
ω

ω
ω
ω

ω
ω
ω

ω

 For {ρ, P, u} variables this matrix becomes

{ }

































∂
∂









∂
∂

−
∂
∂









∂
∂

−
∂
∂









∂
∂

−
∂
∂

∂
∂

∂
∂

−
∂
∂

∂
∂

−
∂
∂

−

∂
∂

∂
∂

−
∂
∂

−
∂
∂

∂
∂

−

∂
∂

∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

=

T
P

P
T

T
P

P
T

w
RT

T
P

P
T

w
RT

T
P

P
T

w
RT

TR
WwTW

T
TW

Tw
wTW

Tw
w

TR
WwTW

Tw
wTW

T
TW

Tw
w

TR
WwTW

Tw
wTW

Tw
wTW

T

uPRJ



















0

00000

0

0

0

,,

3

3

32

2

21

1

1

333

3

33

2

33

1

3

222

3

22

2

22

1

2

111

3

11

2

11

1

1

ω
ω

ω
ω

ω
ω

ω
ρρ

ω
ω
ω

ρ
ω

ρ
ω

ω
ρρ

ω
ρ

ω
ω
ω

ρ
ω

ω
ρρ

ω
ρ

ω
ρ

ω
ω
ω

ρ

where

T
P

T
T

T
RT

T
P i

∂
∂

+
∂
∂

=
∂
∂ ∑





 ω

Determination of temperature from
internal energy

For a given internal energy e0, we want to determine the temperature.
We solve the equation f(T) = e(T) – e0 = 0 iteratively using the
Newton-Rapson method

 
 n

n
nn

Tf

Tf
TT

'
1 

 
vc

dT

Tde


   
 nv

nnnv
n

Tc

eTeTTc
T 0

1




Time dependent - Dual time step

1 13 4

2

n n nQ Q Q Q

t t

   


 

For steady state calculations we use pseudo time approach. For
time dependent calculations, in order to be able to use all of the
acceleration methods we use a dual time step. An approximation
to the physical time derivative now appears as a source term in
the right hand side of the N-S equations.

0
Q Q

F
t

 
  

 

t is the physical time and τ is the pseudo time. We approximate
the physical time derivative using a backward difference scheme.

13 4

2

k n n

k Q Q Q
R F

t

 
  



Since we do not know Qn+1 we approximate it with Qk+1

After some rearrangement of the above equation we have

 is the smoothed residual and R is
k k

R

tk

k

tk

k

kk QRQ
Q






















2
3

2
30

1

1

~

Preliminary results

Convergence Histories for Three-Stage Schemes

Cycles

L
o
g
(|
|R
e
s
||
2
)

0 50 100 150 200 250
-14

-12

-10

-8

-6

-4

-2

0

Case 1

Case 9

Case 10

RAE 2822, RK3/Implicit, Matrix Dissip.

320 x 64

CFL = 1000

RAE 2822: Cases 1, 9, 10

!"#$"%&'($)(*+!"#$"%&'($)(*+

,-(%$"%.)&,-(%$"%.)&// 012+-012+-
3,(%*(-*3,(%*(-*

456&456&77 8&2+9+2$8&2+9+2$

:;&:;&77 8&$,(<+$=&)+%,-(2&*.>>+-+%)+$8&$,(<+$=&)+%,-(2&*.>>+-+%)+$

'4?@A'4?@A

BC1&DEF2.).,&-+$.*1(2&3E"",C.%<BC1&DEF2.).,&-+$.*1(2&3E"",C.%<

'GH&@&IJKJ&$+)"%*$'GH&@&IJKJ&$+)"%*$

5D:35D:3

456&456&77 8&2+9+2$8&2+9+2$

:;&:;&77 A&$,(<+$=&)+%,-(2&*.>>+-+%)+$A&$,(<+$=&)+%,-(2&*.>>+-+%)+$

'4?@ILLL'4?@ILLL

M&363&$N++F$&M&363&$N++F$&!@LKOP

'GH&@&8KP&$+)"%*$'GH&@&8KP&$+)"%*$

!!

x

Y

0 0.1 0.2 0.3

-0.05

0

0.05

0.1

0.15 M
2.1
1.7
1.3
0.9
0.5
0.1

(a)

x

Y

0 0.1 0.2 0.3

-0.05

0

0.05

0.1

0.15
M
0.1
0.08
0.06
0.04
0.02
0

(b)

Figure 4: Rocket Motor (a) full range of Mach contours in the chamber and nozzle (b) zoom on the Mach
values inside the motor where the sound speed is around 1000 m/s and the Mach values are low.

cycles

lo
g

(e
rr

)

0 500 1000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

implicit smoothing
RK/implicit smoothing

Figure 5: Convergence rate for rocket motor for original and improved schemes

!"#$%&#'()*#&+$,&$+"-(Solver

DLR-F4 ! SA Turbulence model

Re = 3.000.000 - M = 0.75

! !"#$%&'()*+,,,+,,,'-.//0'1'23'1'!456/.'78.-9094:'1%;<

!)*'*%69=$784-0

! >"?'=9@.&'(AB'@9:'C48'*'48D.80'-4:E.8F.:-.'GB,'-H-/.0I+

Inviscid computations on a ONERA M6
with a tetrahedral mesh

Geometry: ONERA M6
 Flow conditions:

 M = 0.8395
 Re = 11,720,000
  = 3.06°

 inviscid

Mesh

 Euler mesh
 Made of 611,856 tetrahedral cells
 Generated using Gmsh

Mesh

5

Code performances: Lift and Drag

Decay of density residual for solvers with/without
convergence acceleration

6

.

Code performances: Lift and Drag

Evolution of lift and drag

7

Code performances: Lift and Drag

Distribution of pressure coefficient on the wing surface, with

Mach iso-countours at different spanwise locations

Convergence History for Various CFL Numbers

Lo
g

(e
rr

)
Different CFL # are used for
the N-S eqs. and the turb. Eqs.

 N-S CFL = 1x105; Turb. CFL = 2x104

 N-S CFL = 1000; Turb. CFL = 1000

 N-S CFL = 100; Turb. CFL = 100

Laminar reactive flow –
 Rapid expansion diffuser

Contours maps for the temperature (A), Mach number (B), H2O
mass fraction (C) and OH radical (D)

A B

C D

Convergence history for CFL 20 without multigrid acceleration

Turbulent reactive flow – rocket
motor plume

A rocket motor plume exiting from the
motor nozzle into a low Mach number free
stream flow is calculated. The plume
boundary conditions are defined on the
nozzle throat where the flow velocity is
sonic and the species mass fractions are
defined. The species used for this problem
are: H, O, OH, H2, O2, CO, CO2, H2O,
HCL and N2.

Convergence history: The fluid CFL is 100,000 and
turbulent CFL is 200

 Total density

 Turbulent parameter ω

Turbulent kinetic energy

Temperature

CO2 mass fraction (A) and OH radical (B)

A

B

32

34

For CFL=100, we need on the average 5-10
subiterations per physical time step. For CFL=1000 this rises
to 6-11 subiterations per physical time step with a total CPU
increase of about 20-30%.
For CFL=100, we typically need 7-15 subiterations
while for CFL=1000 we need 8-17 subiterations.

In summary: the preconditioned dual time step code needs
only about 10% of the CPU of the original code.

310TOL 

410TOL 

Conclusions

 centered, upwind schemes

 structured, unstructured grids

 large time step for 2 equation
turbulence model

 faster convergence chemical reactions

 faster convergence in subiterations of
dual time step

 more robust solutions

 Other turbulence models
 Multigrid in turbulence equations
 LES
• Higher Order accurate schemes
 (DGS, Spectral Volume/Difference, WENO)
• Non RK algorithms (ADI,GS,Krylov)

	numeca.pdf
	Implementation of Implicit Residual/RK scheme in NUMECA codes
	Introduction
	Test case 1: The Hobson Cascade
	Test case 2: SE1050
	Test case 2: SE1050
	Test case 2: SE1050
	Test case 2: SE1050
	Test case 2: SE1050
	Test case 3: Laminar Pipe
	Test case 3: Laminar Pipe
	Test case 3: Laminar Pipe
	Test case 3: Laminar Pipe
	Test case 4: Unsteady NACA0012
	Test case 4: Unsteady NACA0012
	Test case 4: Unsteady NACA0012
	Test case 4: Unsteady NACA0012
	Concluding remarks and future work

	NUMECA-KVAB.pdf
	Applications of implicit preconditioning of Runge-Kutta schemes for 3D flows on structured and unstructured grids
	Implicit Preconditioning of RK schemes
	Implicit Preconditioning of RK schemes
	Description of solvers
	Implicit Preconditioning of RK schemes
	Results: Structured solver
	Results: Structured solver
	Results: Structured solver
	Results: Structured solver
	Results: Unstructured solver
	Results: Unstructured solver
	Results: Unstructured solver
	Results: Structured solver
	Results: Structured solver
	Results: Structured solver
	Results: Structured solver
	Results: Unstructured solver
	Results: Unstructured solver
	Results: Unstructured solver
	Results: Structured solver
	Results: Structured solver
	Results: Structured solver
	Results: Structured solver
	Results: Structured solver
	Results: Structured solver
	Results: Structured solver Unsteady computation
	Results: Structured solver Unsteady computation
	Results: Unstructured solver
	Results: Unstructured solver
	Results: Unstructured solver
	Implicit Preconditioning of RK schemes

	MAFATcover.pdf
	Implicit Residual Smoothing for Runge-Kutta Schemes

	junk.pdf
	Results: Unstructured solver

	Mafat cover.pdf
	Implicit Residual Smoothing for Runge-Kutta Schemes
	Hobson Cascade transonic - Euler

	Mafat cover.pdf
	Implicit Residual Smoothing for Runge-Kutta Schemes
	Introduction

