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The Navier-Stokes (N-S) equations for the conservative
variables:
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N-S equations in conservative form:
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* F, G and H are the inviscid fluxes
* F, G, and H, are the viscous fluxes



* In turbulent flow, the viscosity is the sum of the laminar

and the turbulent viscosity

* In addition to N-S equation we solve the k-w SST

turbulence model equations -
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The turbulent viscosity y, is given by

__ pak
max (8,0, SF,)

He = PVy

* k and w are the model variables,
» S Is the magnitude of the vorticity,
= F, , are dump functions,

= v, vy are the laminar and turbulent viscosity parameters
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Real gas equation of state

The equation of state is




The source term vector, S, describes the rate of change of species k:
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dt icall reactions
where w, and w, are the molar concentration and molecular weight of
the species. v, are the stochiometric coefficients of the species k in the
reaction I. g; are the rate of progress variables given by -
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The forward reaction rate k; and the reverse rate k, are
empirically known functions of the temperature.

The forward constant is given by an Arrhenius expression of
the type:

P Zulk
B B ~—E I RT L atm |keK B AS AH
Kij =AT e . Kp( RT) s _eXp( R RT

= A, B, and E, are the Arrhenius constants:
= A is the rate constant

= B. is the temperature exponent

= E, is the activation energy.

The source term for the temperature is

: 1
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RK/Standard Scheme: Three Components
e The 3 components are: RK scheme, implicit residual smoothing, multigrid

e The gth stage of the RK component can be written as
W) = w0 _ o, AtR(W@—1)

where R is the vector residual function, At is the time step, and the
RK coefficients a4 are [0.25, 0.1667, 0.375, 0.5, 1.0].

The residual function R is given by
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v r=0 r=0
with the operators L., L., and L, for convection, viscous diffusion
and numerical dissipation.



RK/Implicit Scheme

e The change in the solution on the gth stage

sW@ = W@ - WO = _ 2w = w1y,
Ty

L is the complete difference operator.
e If we apply implicit residual smoothing, then
L; W = WD),

where L; is an implicit operator.
e Approximately inverting the implicit operator L,

. A
SW = —aqvtp cwla—1)

P is a preconditioner defined by the approximate inverse Z,L._l.



Transforming the equations to primitive variables, the
flux Jacobian is written as:

A=A+ A
1
2

where

A ==(A£|A)

Finally, the implicit smoothing scheme is given by:
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Figure 1: Fourier footprints of RK(3,3) scheme with two preconditioners for all modes with high-frequency
components (64 x 64, M = 0.5, a = 0°, CFL =103, AR =5, Re = c0). (a) Without entropy fix, (b) with
entropy fix.



Figure 2: Effect of dissipation weights on damping behavior of RKI(3, 3) scheme (64 x 64, M = 0.5, o = 45°,
CFL =103, AR =1, Re = 00, 2 SGS). (a) wgts: [1, 1, 1], (b) wgts: [1, 0.5, 0.5].
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Figure 3: Damping behavior of RKI(3,3) scheme with variation in Re and AR (64 x 64, M = 0.5, v = 45°,
2 SGS). (a) Re = 10%, AR =10, CFL =103, (b) Re = 10°, AR = 103, CFL = 10*.



We solve two sets of equations for the smoothed residuals
Independently:

a) For the Eulerian primitive variables

b) For the turbulent model variables — k and w

AG=| 2%
Aw

In the k- w set we use the Jacobian of the source term:
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Extension to chemical reactions

For a real gas, we insert part of the entries of the Jacobian
source terms into the system for the Eulerian variables’ residuals.
For the {w, T, u} primitive variables, the Jacobian matrix we use is
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For {p, P, u} variables this matrix becomes
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Determination of temperature from
internal energy

For a given internal energy e,, we want to determine the temperature.

We solve the equation f(T) = e(T) — e, = O iteratively using the
Newton-Rapson method

Tn+1 :Tn - f(Tn)

f'(T,)

de(T) _ (TN, —e(T, )+e,




For steady state calculations we use pseudo time approach. For
time dependent calculations, in order to be able to use all of the
acceleration methods we use a dual time step. An approximation
to the physical time derivative now appears as a source term in
the right hand side of the N-S equations.
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t Is the physical time and t is the pseudo time. We approximate
the physical time derivative using a backward difference scheme.



Since we do not know Q"*1 we approximate it with Qk+1

After some rearrangement of the above equation we have
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Preliminary results



Convergence Histories for Three-Stage Schemes
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IHobson Cascade

transonic - Euler

Standard
FMG — 4 levels
RK — 4 stages, central differences
CFL=3
Zhu Implicit residual Smoeothing
CPU= 16.6 seconds

WIRSS
EMIG — 4 levels
RK — 3 stages, central differences
CFL=1000
2 SGS sweeps €=0.75
CPU =4.5 seconds
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Figure 4: Rocket Motor (a) full range of Mach contours in the chamber and nozzle (b) zoom on the Mach
values inside the motor where the sound speed is around 1000 m/s and the Mach values are low.
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Figure 5: Convergence rate for rocket motor for original and improved schemes
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Results: Unstructured Solver

DLR-F4 — SA Turbulence model
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DPW-4: ~16.000.000 cells / SA / Double precision /4MG
16 64bit-procs

CPU time: ~75 min for 6 orders convergence (50 cycles).
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Inviscid computations on a ONERA M6
with a tetrahedral mesh

Geometry: ONERA M6
- Flow conditions:

M = 0.8395

Re = 11,720,000
o = 3.06°

7 inviscid



1 Euler mesh
1 Made of 611,856 tetrahedral cells
~ Generated using Gmsh
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Decay of density residual for solvers with/without
convergence acceleration



Evolution of lift and drag
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Distribution of pressure coefficient on the wing surface, with
Mach iso-countours at different spanwise locations



Convergence History for Various CFL Numbers

Different CFL # are used for
0% the N-S egs. and the turb. Egs.

® N-S CFL = 1x10°; Turb. CFL = 2x104
= N-S CFL = 1000; Turb. CFL = 1000
= N-S CFL = 100; Turb. CFL =100

(2 100 200 00 AGC



Laminar reactive flow —
Rapid expansion diffuser

Wall condition:
Shape of the wall:
r=L[1+sin(mx/4)]

Inflow:
P=0.081Mpa
T=1900°K
Yo=0.231;

Yu=0.00874;

Yro=0.76026

Axi-symmetric
condition




Contours maps for the temperature (A), Mach number (B), H20
mass fraction (C) and OH radical (D)




Convergence history for CFL 20 without multigrid acceleration
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A rocket motor plume exiting from the
motor nozzle into a low Mach number free
stream flow is calculated. The plume
boundary conditions are defined on the
nozzle throat where the flow velocity is
sonic and the species mass fractions are
defined. The species used for this problem
are: H, O, OH, H2, 02, CO, CO2, H20,
HCL and N2.



Convergence history: The fluid CFL is 100,000 and
turbulent CFL is 200
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CO2 mass fraction (A) and OH radical (B)
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Dnal time step for fow about NACADDL2

VIS0=3.5,

0.20. CFL=100,

150 physical time steps, Atpgycal

M. = 0.10, angle=30°, Fe—23,000,000.
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Comparson of subiterative convergence for onginal and RKI1 schemes of the dual

time-stepping algornthm.

(b) residual redneed 4 orders.

(a) residual reduced 3 orders,
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For CFL=100, TOL=102 we need on the average 5-10
subiterations per physical time step. For CFL=1000 this rises
to 6-11 subiterations per physical time step with a total CPU
Increase of about 20-30%.

For CFL=100, TOL=10+* we typically need 7-15 subiterations
while for CFL=1000 we need 8-17 subiterations.

In summary: the preconditioned dual time step code needs
only about 10% of the CPU of the original code.




» centered, upwind schemes
» structured, unstructured grids

> large time step for 2 equation
turbulence model

» faster convergence chemical reactions

» faster convergence in subiterations of
dual time step

» more robust solutions
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=  QOther turbulence models
= Multigrid in turbulence equations

= LES
» Higher Order accurate schemes

(DGS, Spectral Volume/Difference, WENO)
* Non RK algorithms (ADI,GS,Krylov)
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