Prospects for High-Speed Flow Simulations

Graham V. Candler Aerospace Engineering & Mechanics University of Minnesota

Support from AFOSR and ASDR&E

Future Directions in CFD Research: A Modeling & Simulation Conference

August 7, 2012

Today's Talk

- Motivating problems in high-speed flows
- An implicit method for aerothermodynamics / reacting flows
- A kinetic energy consistent, low-dissipation flux method
- Some examples

Transition in Ballistic Range at M = 3.5

Shadowgraph of conical-nosed cylinder model in free flight; $M_{\infty} = 3.5$; $U_e/\nu = 2.1 \times 10^6$ per inch; H = 150 µin.; wind tunnel "air-off"; conical light field.

Transition to Turbulence

What are the dominant mechanisms of transition? Can we control it?

University of Minnesota

Swanson and Schneider

Turbulent Heat Flux

Why are turbulence model inaccurate? How can we fix them?

Scramjet Fuel Injection

Can we resolve the dominant unsteadiness? At reasonable cost?

STS-119: Comparison with HYTHIRM Data

Inviscid Mach 12 Cylinder Flow

49k Hexahedral Elements

575k Tetrahedral Elements

Future Directions in CFD for High-Speed Flows

- More complicated flow and thermo-chemical models:
 - Much larger numbers of chemical species / states
 - Detailed internal energy models
 - More accurate representation of ablation
 - Hybrid continuum / DSMC / molecular dynamics
 - Improved RANS models
- Unsteady flows:
 - Instability growth, transition to turbulence
 - Shape-change due to ablation
 - Fluid-structure interactions
 - Control systems and actuators in the loop
 - Wall-modeled LES on practical problems

Implicit Methods

- Cost scaling of current methods:
 - Quadratic with # of species
 - Implicit solve dominates
 - Memory intensive
- Need more species/equations:
 - C ablation = 16 species
 - HCN ablation = 38 species
 - Combustion
 - Internal energies
 - Turbulence closure

Computational cost of the DPLR Method

Background: DPLR Method

Discrete Navier-Stokes equations: $\frac{\partial U^{n}}{\partial t} + \frac{1}{V} \sum_{f} \left(F'^{n+1} S \right)^{f} = W^{n+1} \qquad \qquad U = \begin{pmatrix} \rho_{1} \\ \vdots \\ \rho_{ns} \\ \rho_{u} \\ \rho_{v} \\ \rho_{w} \\ E_{v} \end{pmatrix}, \qquad F' = \begin{pmatrix} \rho_{1} u \\ \vdots \\ \rho_{ns} u' \\ \rho_{uu'} + ps_{x} \\ \rho_{vu'} + ps_{y} \\ \rho_{wu'} + ps_{z} \\ E_{v} u' \\ (E+p)u' \end{pmatrix}$

Linearize in time:

$$F'^{n+1} \simeq F'^n + \frac{\partial F'}{\partial U}^n \delta U^n$$
$$W^{n+1} \simeq W^n + \frac{\partial W}{\partial U}^n \delta U^n$$

Solve on grid lines away from wall using relaxation:

$$\begin{split} \delta U^{(0)} &= 0\\ \text{for } k &= 1, k_{\max}\\ \frac{\delta U^{(k)}}{\Delta t} + \frac{1}{V} \sum_{f=\ell} \left(A^{+f} \delta U^L + A^{-f} \delta U^R \right)^{(k)} S^f - \frac{\partial W}{\partial U}^n \delta U^{(k)} &= -\frac{1}{V} \sum_f \left(F'^n S \right)^f + W^n\\ - \frac{1}{V} \sum_{f \neq \ell} \left(A^{+f} \delta U^L + A^{-f} \delta U^R \right)^{(k-1)} S^f \end{split}$$

end

 $\delta U^n = \delta U^{(k_{\max})}$

IVERSITY OF MINNESOTA

Background: DPLR Method

Discrete Navier-Stokes equations:

$$\frac{\partial U^n}{\partial t} + \frac{1}{V} \sum_f \left(F'^{n+1} S \right)^f = W^{n+1}$$

Linearize in time:

$$F'^{n+1} \simeq F'^n + \frac{\partial F'}{\partial U}^n \delta U^n$$
$$W^{n+1} \simeq W^n + \frac{\partial W}{\partial U}^n \delta U^n$$

Solve on grid lines away from wall using relaxation:

$$\begin{split} \delta U^{(0)} &= 0\\ \text{for } k &= 1, k_{\max}\\ &\frac{\delta U^{(k)}}{\Delta t} + \frac{1}{V} \sum_{f=\ell} \left(A^{+f} \delta U^L + A^{-f} \delta U^R \right)^{(k)} S^f - \frac{\partial W}{\partial U}^n \delta U^{(k)} = -\frac{1}{V} \sum_f \left(F'^n S \right)^f + W^n\\ &- \frac{1}{V} \sum_{f \neq \ell} \left(A^{+f} \delta U^L + A^{-f} \delta U^R \right)^{(k-1)} S^f \end{split}$$

end

 $\delta U^n = \delta U^{(k_{\max})}$

Solve on grid lines away from wall using relaxation:

$$\begin{split} \delta U^{(0)} &= 0\\ \text{for } k &= 1, k_{\max}\\ \frac{\delta U^{(k)}}{\Delta t} + \frac{1}{V} \sum_{f=\ell} \left(A^{+f} \delta U^L + A^{-f} \delta U^R \right)^{(k)} S^f - \frac{\partial W}{\partial U}^n \delta U^{(k)} &= -\frac{1}{V} \sum_f \left(F'^n S \right)^f + W^n\\ - \frac{1}{V} \sum_{f \neq \ell} \left(A^{+f} \delta U^L + A^{-f} \delta U^R \right)^{(k-1)} S^f \end{split}$$

end

 $\delta U^n = \delta U^{(k_{\max})}$

Decoupled Implicit Method

Split equations:

$$\frac{\partial \tilde{U}}{\partial t} + \frac{1}{V} \sum_{f} \left(\tilde{F}'^{n+1} S \right)^{f} = 0 \qquad \qquad \tilde{U} = \rho \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ E \end{pmatrix}, \quad \hat{U} = \rho \begin{pmatrix} c_{1} \\ \vdots \\ c_{ns} \\ e_{v} \end{pmatrix} = \rho \hat{V}$$
$$\frac{\partial \tilde{U}}{\partial t} + \frac{1}{V} \sum_{f} \left(\hat{F}'^{n+1} S \right)^{f} = \hat{W}^{n+1}$$

Solve in two steps:

First use DPLR for $\,\tilde{U}$, then a modified form of DPLR for $\,\hat{V}$

$$\begin{split} \hat{W}^{n+1} &= \hat{W}(\tilde{U}^{n+1}, \hat{V}^{n+1}) \simeq \hat{W}(\tilde{U}^{n+1}, \hat{V}^n) + \frac{\partial \hat{W}}{\partial U} \bigg|_{\tilde{U}} \frac{\partial U}{\partial \hat{V}} \delta \hat{V}^n \\ C &= \frac{\partial \hat{W}}{\partial U} \bigg|_{\tilde{U}} \frac{\partial U}{\partial \hat{V}} \qquad \chi = \text{diag}(C) \\ C\delta \hat{V} &= \chi \delta \hat{V} + (C - \chi) \delta \hat{V} \quad \text{Lag the off-diagonal terms in source term Jacobian} \end{split}$$

Comparison of Implicit Problems

DPLR **block** tridiagonal solve (2D):

Decoupled scalar tridiagonal solve:

Does it Work?

But, must have:
$$\sum_s F'_{
ho_s} = F'_{
ho}$$

Comparison of Convergence History

Mach 15, 21-species, 32-reaction air-CO₂ kinetics model on a resolved grid 10 cm radius sphere -8° cone; results are similar at different *M*, *Re*, etc.

Extensive comparisons for double-cone flow at high enthalpy conditions

Low-Dissipation Numerical Methods

- Most CFD methods for high-speed flows use upwind methods:
 - Designed to be dissipative
 - Good for steady flows
 - Dissipation can overwhelm the flow physics
- Develop a new numerical flux function:
 - Discrete kinetic energy flux consistent with the KE equation
 - Add upwind dissipation using shock sensor
 - 2nd, 4th and 6th order accurate formulations
- Other similar approaches are available

Kinetic Energy Consistent Flux

- Usually solve for mass, momentum and total energy
- KE portion of the energy equation is redundant:
 - Only need the mass and momentum equations for KE
- Can we find a flux that is consistent between equations?

$$-k\frac{\partial\rho u_{j}}{\partial x_{j}} + u_{i}\frac{\partial\rho u_{i}u_{j}}{\partial x_{j}} = \frac{\partial\rho ku_{j}}{\partial x_{j}} \qquad \text{Spatial derivatives}$$
$$-k\frac{\partial\rho}{\partial t} + u_{i}\frac{\partial\rho u_{i}}{\partial t} = \frac{\partial\rho k}{\partial t} \qquad \text{Time derivatives}$$
$$\text{mass} \qquad \text{momentum} \qquad \text{energy}$$

• Always true at the PDE level; but not discretely (space/time)

Kinetic Energy Consistent Flux

• Derive fluxes that ensure that these relations hold discretely:

$$F_{\rm f}^{\prime *} = \rho_{\rm f} u_{\rm f}^{\prime} \begin{bmatrix} 1\\ \bar{u}\\ \bar{v}\\ \bar{w}\\ \bar{k} \end{bmatrix} \qquad \text{Semi-discrete form}$$

$$F_{\rm f}^{\prime *} = \rho_{\rm f} u_{\rm f}^{\prime} \begin{bmatrix} \frac{1}{u^{\star}}\\ \frac{\bar{u}^{\star}}{\bar{v}^{\star}}\\ \frac{\bar{v}^{\star}}{\bar{k}^{\star}} \end{bmatrix}_{\rm f} \qquad \text{Fully discrete form} \qquad \left(u^{\star} = u^{\star}\right)^{-1} = 0$$

$$\left(u^{\star} = \frac{\sqrt{\rho^{n+1}}u^{n+1} + \sqrt{\rho^n}u^n}{\sqrt{\rho^{n+1}} + \sqrt{\rho^n}}\right)$$
 etc.

- In practice, this approach is very stable
- Add dissipation with shock sensor

Subbareddy & Candler (2009)

Low-Dissipation Numerical Method

Compressible Mixing Layer

Conventional 3rd order upwind method

2nd order KE consistent method

Same cost, much more physics

Capsule Model on Sting

Schwing

Gradient Reconstruction for Higher Order

- For unstructured meshes, use a pragmatic approach:
 - Reconstruct the face variables using the cell-centered values and gradients
 - Requires minimal connectivity information

$$\phi_{\rm f}^L = \phi_i + \alpha \left(\nabla\phi\right)_i \cdot (\vec{x}_{\rm f} - \vec{x}_i)$$

$$\phi_{\rm f}^R = \phi_{i+1} + \alpha \left(\nabla\phi\right)_{i+1} \cdot (\vec{x}_{\rm f} - \vec{x}_{i+1})$$

$$\phi_{\rm f} = \frac{1}{2}(\phi_{\rm f}^L + \phi_{\rm f}^R)$$

- Pick \$\alpha\$ to give the exact 4th order derivative on a uniform grid
 \$\alpha\$ controls the modified wavenumber and can be tuned
- Scheme is not exactly energy conserving Pirozzoli (2010)
- Higher-order only on smoothly-varying grids

Low-Dissipation Numerical Method

Propagation of a Gaussian density pulse

Discrete Roughness Wake

Cylinder mounted in wall of Purdue Mach 6 Quiet Tunnel

Wheaton & Schneider

270M element simulation 100D = 0.6 meters length 2k cores

Bartkowicz & Subbareddy

Grid Generation

Gridpro topology

O(10) reduction in grid elements

(before wall clustering)

Discrete Roughness Wake

Comparison with experiment: Pressure fluctuations at x/D = -1.5

Impossible with upwind methods

Crossflow Instability on a Cone

Purdue M6 Quiet Tunnel experiments: 7° cone, 41 cm long 0.002" (51 μm) nose radius

Gronvall AIAA-2012-2822

Random roughness on wind side: 10, 20 μm height (~ paint finish)

Crossflow Instability on a Cone

Simulations of Capsule Dynamic Stability

Stern (AIAA-2012-3225)

Pitch-Yaw Coupling: Divergence

Simulation of Injection and Mixing

DNS of Mach 6 Turbulent Boundary Layer

Summary: In a Ten-Year Time Frame

- Scaling will be more of an issue: O(1T) elements
- Grid generation will remain painful
- Methods for data analysis will be needed
- Solutions will become less a function of the grid quality
- Much more complicated (accurate) physics models
- True multi-physics / multi-time scale simulations