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Today’s Talk 

• Motivating problems in high-speed flows 

• An implicit method for aerothermodynamics / reacting flows 

• A kinetic energy consistent, low-dissipation flux method 

• Some examples 
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Transition in Ballistic Range at M = 3.5 

Chapman 
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Transition to Turbulence 

Purdue: Juliano & Schneider 

CUBRC: Wadhams, MacLean & Holden 

HIFiRE-5 2:1 Elliptic Cone 

Crossflow Instability on a Cone  

Swanson and Schneider 

What are the dominant mechanisms of transition? Can we control it? 



Turbulent Heat Flux 
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HIFiRE-1 Blunt Cone 

 

MacLean et al. 2009 

Why are turbulence model inaccurate? How can we fix them? 
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Scramjet Fuel Injection 

Instantaneous Fuel Concentration 

Buggele and Seasholtz (1997) 

Gruber et al (1997) 

CUBRC 

Can we resolve the dominant unsteadiness? At reasonable cost? 



 

STS-119: Comparison with HYTHIRM Data 
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A trivial calculation on 

500 cores, but BL trip 

location is specified: 

Not a prediction. 

RANS Simulation HYTHIRM Data 

40 M elements 

5-species finite-rate air 

Radiative equilibrium (  = 0.89) 

Horvath et al. 
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Inviscid Mach 12 Cylinder Flow 

 

p / po T / To s / s1 

49k Hexahedral 

Elements 

 

575k Tetrahedral 

Elements 
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Future Directions in CFD for High-Speed Flows 

• More complicated flow and thermo-chemical models: 

– Much larger numbers of chemical species / states 

– Detailed internal energy models 

– More accurate representation of ablation 

– Hybrid continuum / DSMC / molecular dynamics  

– Improved RANS models 

 

• Unsteady flows: 

– Instability growth, transition to turbulence 

– Shape-change due to ablation 

– Fluid-structure interactions 

– Control systems and actuators in the loop 

– Wall-modeled LES on practical problems 



Implicit Methods 

• Cost scaling of current methods: 

– Quadratic with # of species 

– Implicit solve dominates 

– Memory intensive 

 

• Need more species/equations: 

– C ablation = 16 species 

– HCN ablation = 38 species 

– Combustion 

– Internal energies 

– Turbulence closure 
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Computational cost of the DPLR Method 



Background: DPLR Method 
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Linearize in time: 

Solve on grid lines away from wall using relaxation: 

Discrete Navier-Stokes equations: 



Background: DPLR Method 
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Linearize in time: 

Solve on grid lines away from wall using relaxation: 

Discrete Navier-Stokes equations: 

 



Background: DPLR Method 
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Linearize in time: 

Solve on grid lines away from wall using relaxation: 

Discrete Navier-Stokes equations: 

Reynolds Number
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Decoupled Implicit Method 
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Split equations: 

Solve in two steps: 

       First use DPLR for      , then a modified form of DPLR for 

Lag the off-diagonal terms in source term Jacobian 



Comparison of Implicit Problems 
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DPLR block tridiagonal solve (2D): 

Decoupled scalar tridiagonal solve: 

quadratic term 

ne x ne block matrices 



Does it Work? 
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Surface heat flux for 21-species Air-

CO2 mixture at Mach 15 

Chemical species on stagnation streamline 

 

But, must have: 



Comparison of Convergence History 
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Mach 15, 21-species, 32-reaction air-CO2 kinetics model on a resolved grid 

10 cm radius sphere – 8o cone; results are similar at different M, Re, etc. 

 

Extensive comparisons for double-cone flow at high enthalpy conditions 



Comparison of Computational Cost 
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DPLR 

Decoupled 

Computer Time Speedup 

Memory reduction ~ 7X 

Source term now dominates cost 
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Low-Dissipation Numerical Methods 

• Most CFD methods for high-speed flows use upwind methods: 

– Designed to be dissipative 

– Good for steady flows  

– Dissipation can overwhelm the flow physics  

 

• Develop a new numerical flux function: 

– Discrete kinetic energy flux consistent with the KE equation 

– Add upwind dissipation using shock sensor 

– 2nd, 4th and 6th order accurate formulations  

 

• Other similar approaches are available 



Kinetic Energy Consistent Flux 

• Usually solve for mass, momentum and total energy 

• KE portion of the energy equation is redundant: 

– Only need the mass and momentum equations for KE 

• Can we find a flux that is consistent between equations?  

 

 

 

 

 

 

• Always true at the PDE level; but not discretely (space/time) 

 

Spatial derivatives 

Time derivatives 

mass        momentum       energy  



Kinetic Energy Consistent Flux 

 

• Derive fluxes that ensure that these relations hold discretely: 

 

 

 

 

 

 

 

 

 

• In practice, this approach is very stable 

• Add dissipation with shock sensor 

 

Semi-discrete form 

Fully discrete form 

Subbareddy & Candler (2009) 
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Low-Dissipation Numerical Method 

Conventional 3rd order upwind method 

Compressible Mixing Layer 

 

2nd order KE consistent method 

Same cost, much more physics 



Capsule Model on Sting 
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2nd order 

KEC 

Schwing 



Gradient Reconstruction for Higher Order 

• For unstructured meshes, use a pragmatic approach: 

– Reconstruct the face variables using the cell-centered values 

and gradients 

– Requires minimal connectivity information 

 

 

 

 

– Pick  to give the exact 4th order derivative on a uniform grid  

 controls the modified wavenumber and can be tuned 

• Scheme is not exactly energy conserving 

• Higher-order only on smoothly-varying grids 

 

Pirozzoli (2010) 



Low-Dissipation Numerical Method 
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Upwind methods rapidly damp solution 

Low-order methods are dispersive 

Subbareddy & Bartkowicz 

Propagation of a Gaussian density pulse 

Enables a new class 

of simulations 

4th  

2nd 

6th  



Discrete Roughness Wake 
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Bartkowicz & Subbareddy 

 

270M element simulation 

100D = 0.6 meters length 

2k cores 

Cylinder mounted in wall of Purdue Mach 6 Quiet Tunnel 

Wheaton & Schneider 



Grid Generation 
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Gridpro topology 

Grid near protuberance 

(before wall clustering) 

O(10) reduction 

in grid elements 



Discrete Roughness Wake 
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Comparison with experiment: Pressure fluctuations at x/D = -1.5 

 Simulation 

Experiment 

 
6th order KEC 

4th order KEC 

3rd order upwind 

2nd order KEC 

Impossible with upwind methods 



Crossflow Instability on a Cone 
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Grid Topology 

Surface and BL Edge 

Streamlines 

Purdue M6 Quiet Tunnel experiments: 

    7o cone, 41 cm long 

    0.002” (51 m) nose radius 

 

 

 

 

 

 

 

Random roughness on wind side: 

    10, 20 m height (~ paint finish) 

Gronvall AIAA-2012-2822 



Purdue TSP Data (Swanson) 

Crossflow Instability on a Cone 

30 

Purdue Oil Flow Experiment 

Simulation (heat flux) 

Simulation (shear stress) 



Simulations of Capsule Dynamic Stability 
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6th Order Central 

2nd Order Upwind 

Blue = Upwind 

Red = Central 

Pitch-Yaw Coupling: Divergence 

6-DOF moving grid simulation 

Capture wake unsteadiness 

Stern (AIAA-2012-3225) 



Simulation of Injection and Mixing 

32 

Mean injectant mole fraction measurements and 

simulation; data courtesy of C. Carter, AFRL 

x/d = 5 

x/d = 25 

NO PLIF 

90o injection in M=2 crossflow 

Ethylene into air 

 

Lin et. al 

J = 0.5 

x/d = 5 

x/d = 25 



DNS of Mach 6 Turbulent Boundary Layer 
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Heat Flux  

 

5400 x 225 x 250  

Subbareddy AIAA-2012-3106 



Summary: In a Ten-Year Time Frame 

• Scaling will be more of an issue: O(1T) elements 

• Grid generation will remain painful 

• Methods for data analysis will be needed 

• Solutions will become less a function of the grid quality 

• Much more complicated (accurate) physics models 

• True multi-physics / multi-time scale simulations 

34 


